
*1 Web form: A technology for building Web pages to provide a mechanism
enabling the engine on a server to process information entered and selected by the
client. In this article, it refers to the text entry input and selection fields included
on a Web page.

*2 T9
®
: T9 and the T9 logo are registered trademarks of Tegic Communications Inc.

of the United States.

1. Introduction
Mobile Internet applications and services have been widely

deployed and extensively explored in the last decade. An

increasing number of mobile services including Internet shop-

ping, booking accommodation, and membership registration

have become available, and often require Web forms
*1

to be

filled with users profiles. Figure 1 shows an example of a

Japanese HTML-based form filled with user data. In this exam-

ple, each line from top to bottom requires entry of the name in

kanji (Chinese characters), the name in katakana (Japanese

alphabets for loan words) that show how to read, postal code,

state, city, other parts of the address, telephone number, and

mobile e-mail address. Many Web pages require the entry of

such common user data. We have seen some promising data

mining solutions and products for mobile terminals such as

input prediction and conversion engines, e.g., T9
®*2

and Wnn
®*3

for Japanese, that considerably reduce the burden on the user

when manually entering data by using limited user interfaces on

a mobile terminal. These products are particularly effective in

predicting character strings by matching the initial part of vari-

ous input data (such as when writing emails) and converting

hiragana (another type of Japanese alphabets for native Japanese

An Automatic Form
Filling Function on
Mobile Terminals

An Automatic Form Filling function running on a mobile ter-

minal that fills Web forms on the Internet with preset user

data has been developed experimentally. This function

improves browser usability when entering data in such online

forms automatically. This article presents an algorithm suit-

able for resource-scarce mobile terminals and outlines the

prototype system.

Chie Noda

24

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 24

ノート
An Automatic Form Filling function running on a mobile terminal that fills Web forms on the Internet with preset user data has been developed experimentally. This function improves browser usability when entering data in such online forms automatically. This article presents an algorithm suitable for resource-scarce mobile terminals and outlines the prototype system.

25

NTT DoCoMo Technical Journal Vol. 8 No.4

words) into kanji characters. However, even with an input pre-

diction and conversion engine, each individual field still has to

be selected and certain data entered manually. These products

are therefore unsuitable for entering user data of limited variety.

We therefore propose the Automatic Form Filling function

running on a mobile terminal that fills forms in downloaded

Web pages with the preset user data. This function can be

implemented by specifying special attributes for Web forms. In

this case, data is entered automatically into Web forms when

these attributes are found. DoCoMo’s My Profile function sup-

ported on some 903i Series mobile terminals adopts this

method, although existing Web forms not utilizing these special

attributes are incompatible. The Internet Engineering Task

Force (IETF)
*4

has specified input field names for e-commerce

use as Electronic Commerce Modeling Language (ECML) [1]

however they are rarely used on the Internet, and do not accom-

modate Japanese.

Moreover, such products as ‘gooID memory’ provided by

NTT Resonant Inc. for PCs and PDAs enable automatic form

filling executing locally on a terminal without any particular

need to specify attributes. Such products have not yet been

implemented on mobile terminals.

Given these circumstances, an Automatic Form Filling function

that is executed locally on a mobile terminal without requiring

changes to Web forms has been experimentally developed.

This article describes a form filling algorithm, its system

overview, and the prototype developed for evaluation.

2. Characteristics of Web Forms
and Definitions of Rule Syntax

An analysis of Web forms on the Internet, covering such

points as the required types of user data, order of input fields,

and context information before and after the input fields, reveals

many similarities. Here, ‘context information’ refers to informa-

tion within HTML related to the input fields. In practice it indi-

cates information displayed on the browser (referred to as

‘labels’) and attribute information specified for the input fields

within HTML source code. Rules for form filling can be

extracted from this information. This chapter explains the char-

acteristics of Web forms used in the generation of such rules,

and describes the basic rule syntax and expansion of syntax into

Input Group Rules.

2.1 Characteristics of Web Forms

The similarities of Web forms on the Internet requiring user

data were analyzed. As an example, Table 1 shows the types of

user data required on three English-language Websites (the

*3 Wnn
®
: Wnn is a registered trademark of Omron Corporation.

*4 IETF: A standardization organization that develops and promotes standards for
Internet technology. The technology specifications formulated here are published
as RFCs (Request For Comment).

Concept name Web site A Web site B Web site C

First Name

Last Name

Address 1

Address 2

City

State

Zip

Country

Phone
number

E-mail
address

Table 1 Various Name attributes in Web sites

shippingAddress.
firstname

shippingAddress.
lastname

shippingAddress.
address1

shippingAddress.
address2

shippingAddress.
city

shippingAddress.
state

shippingAddress.
zip

shippingAddress.
countryCode

shippingAddress.
voice

–

name

name

address1

address2

address3

address4

postcode

country

telephone

email

firstName

lastName

address1

address2

City

state

postalCode

country

phoneNumber

email

何処

ドコモ ダケ

竹

永田町 2 － 1 1 － 1　山王ビル

docomodake@docomo.co.jp

100 0014

123403 4321

Figure 1 Web form input (example)

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 25

26

‘concept name’) and name attribute specified for each input

field. As described above, common user data is required. On

Website A, name attributes beginning with the identifier ‘ship-

ping’ are used. If we exclude the pre-identifiers, common sub-

strings
*5

can be identified for the same user data type. It there-

fore becomes necessary to analyze various character strings and

to find common sub-strings when extracting rules.

Rules are extracted from the similarities in context informa-

tion related to the before and the after input fields in addition to

the target input field, such as labels displayed on the browser,

name attributes specified for each form in source code, and

order of appearance of input fields. Based on common sub-

strings used in labels and name attributes, the probability with

which specific concept names are required must be determined

by analyzing a large number of Web forms on the Internet.

2.2 Basic Rule Syntax

Rules specify which context information within HTML is to

be used and the probability with which a certain concept name

is required, in order to derive the optimum concept names for

input fields on each Web form. Figure 2 shows some of the

input fields displayed on the browser, and the corresponding

HTML source code. The six positions shown in Fig. 2 are con-

text information used in predicting data entry. The label for the

target input field (Fig. 2 (1)), and the name attribute specified

for the input field itself (Fig. 2 (2)) are considered together with

labels of input fields before and after (or left and right sides of)

them (Fig. 2 (3) and (4)) and their name attributes (Fig. 2 (5)

and (6)). Note that the definition of a label used here is not

restricted to the <label> tag in the HTML source code, but the

strings displayed before input fields on the HTML browser.

Rule syntax is defined as shown below in order to use the

context information given in the six positions noted above.

Position | Condition | Value | = Concept Name | Probability

(If the information given in the six positions related to the target

input field includes, or is the same as, value, the probability

with which ‘Concept Name x’ is required is y%.)

According to this rule syntax, the rules applied to (2) and (3)

in Fig. 2 are shown below as examples.

Example of rule applied to (2):

Current_Name_Attribute | Equals | lastname | = Last Name | 100

(If the name attribute in the target field is equal to ‘lastname,’

the probability of filling ‘Last Name’ in the target input field is

100%.)

Example of rule applied to (3):

Upper_Label | Contains | First Name | = Last Name | 70

(If the label of the immediately previous input field includes

‘First Name,’ the probability of filling ‘Last Name’ in the target

input field is 70%.)

The analysis and generation of rules use a large number of

Internet Web forms as source data. They may be automated in

software. Rules related to labels and name attributes including

these probability values are held locally on the mobile terminal.

When the information in the above-mentioned six positions

is analyzed and multiple rules found to match the target input

field, probability values are summed for each concept name.

The concept name having the highest probability value is select-

ed as the most probable user data to be filled in. This method

provides greater accuracy than evaluating the rule syntax from

single information.

*5 Sub-string: A part of a string of characters.

＜label for="firstname"＞First Name:＜/label＞

＜input id="firstname" name="firstname" type="text"/＞

＜label for="lastname"＞Last Name:＜/label＞

＜input id="lastname" name="lastname" type="text"/＞

＜label for="address1"＞Address:＜/label＞

＜input id="address1" name="address1" type="text"/＞

First Name:

Last Name:

Address:

(3)

(3)

(5)

(5)

(1)

(1)

(2)

(2)

(4)

(4)

(6)

(6)

Figure 2 User data input fields and HTML source code (example)

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 26

27

NTT DoCoMo Technical Journal Vol. 8 No.4

2.3 Input Group Rules

In addition to the simple rule syntax described in Section

2.2, a method of expanding rule syntax is explained here. The

formats for using Japanese Web forms are more complex than

for such European languages as English and German [2]. This

complexity is primarily due to the following three reasons. First,

there may be more than one expression for the same meaning,

and multiple meanings for the same expression. The following

shows different expressions for meaning ‘name’ found in 20

Japanese Web pages.

名前、お名前、なまえ、おなまえ、氏名、ご氏名、漢字氏名、

カタカナ氏名、ローマ字氏名、姓名、セイメイ、宿泊者氏名

Secondly, the Japanese language uses multiple character

sets–kanji, hiragana, katakana, and romaji (roman

alphabets)–along with single-byte and double-byte characters

for the latter two. It is often the case that entry of specific char-

acter sets is specified for Japanese input fields. In the example

shown in Fig. 1, the name is required in kanji and katakana in

the first and second lines respectively. Although katakana is not

explicitly specified here for the second line, it is obvious here to

input katakana since ‘フリガナ’ (providing information on how

to read the kanji) after ‘氏名’ (name) is written in katakana. In

the ‘郵便番号’ (postal code) and ‘電話番号’ (phone number)

input fields for the third and seventh lines in Fig. 1, the labels to

the right of the input fields specify ‘single-byte numerals’ and

provide examples. Thirdly, input fields are often split into mul-

tiple sub-fields on Japanese Web pages for further details in

input data. In Fig. 1, the first, second, third, and seventh lines

for name in kanji and katakana, postal code, and phone number

are filled in multiple fields in the same row.

For the reasons described above, Japanese rules must speci-

fy not only the label immediately before, but also the multiple

labels in the vicinity of the target input field, e.g., the multiple-

labels on the left and right sides, and the relationships between

the labels.

In the Japanese context, the existence of more than one

expression for the same meaning, and the utilization of the com-

bined multiple labels, pose difficulties in the generation of rules

with high probability using common sub-strings. The Input

Group Rule has been introduced to overcome these difficulties.

Multiple input fields and related labels can be grouped based on

their positional relationships. A concept name is selected for the

entire group according to the Input Group Rule, with the con-

cept name for each input field subsequently determined based

on the Inner Group Rule. An input group may be detected, for

example, by considering information in the same row in the

table as a group based on the <tr> tags that indicate rows in the

HTML table, or information located in the vicinity as a group

based on coordinate information. The Input Group Rule is used

to specify which labels appear within the group, although the

order of labels and positional relationships with the target input

field are not specified. Conversely, the Input Group Rule is used

to predict the concept name to be entered in the input field

based on the order in which the labels appear, or the number of

input fields.

Figure 3 shows an example of the HTML source code for

the first row in Fig. 1. The section between the <tr> and </tr>

tags is recognized as an input group. Since this input group

includes ‘氏名’ and ‘漢字’ (kanji) labels, the following Input

Group Rule is used to predict that ‘Name_Kanji group’ is a con-

cept name of the whole.

Input Group | CONTAINS | 氏名 | Input Group | CONTAINS |

漢字 | = Name_Kanji group | 100

(When ‘氏名’ and ‘漢字’ labels appear in the group, the proba-

bility of the concept name being ‘Name_Kanji group’ is 100%.)

Figure 3 HTML source code (example)

<tr>
<td>
氏名（漢字）【必須】

</td>
<td>
（姓）＆nbsp;<input type="text" name="lname"

maxlength="85" size="14" value=""> ＆nbsp;＆nbsp;
（名）＆nbsp;<input type="text" name="fname"

maxlength="85" size="14" value="">
</td>

</tr>

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 27

28

Since the order in which the labels appear is ‘姓’ (last name)

and ‘名’ (first name), the following Input Group Rule is used to

predict that a concept name for each input field is

‘LastName_Kanji’ and ‘FirstName_Kanji,’ respectively.

姓 | 名 | = LastName_Kanji, FirstName_Kanji

(When the labels appear in the order ‘姓’ and ‘名,’ the data is

entered in the two input fields in the order LastName_Kanji,

FirstName_Kanji.)

3. System Overview
Figure 4 shows an example of the system architecture for

implementing the Automatic Form Filling function on a mobile

terminal. The proxy on the mobile terminal mediates communi-

cations between the Web browser and Web servers. It stores

user data corresponding to the concept names set by the user in

advance, along with a list of rules as described in Chapter 2.

When the Web page includes input fields, the Form Filler in the

proxy analyzes related multiple context information, selects

matching rules from the rule list held on the mobile terminal,

generates a dynamic rule matching the context information, and

derives the concept name with the highest probability. The

result of filling the most probable user data in the input fields is

then sent to the Web browser. This may also be introduced as a

plug-in function for the Web browser instead of the proxy archi-

tecture shown in Fig. 4.

As shown in Fig. 4, the Form Filler is composed of three

functional blocks. The HTML parser analyzes the syntax of the

downloaded Web page, and then generates an object
*6

structure

including the input fields, related context information, and posi-

tional information. The rule inspector function selects all rules

matching the object structure, and generates a dynamic rule.

The probability values specified in the selected rules are

summed for each concept name and the concept name with the

highest probability value is selected. Priority is given in apply-

ing the Input Group Rules to the input fields considered as input

groups based on <tr> tags as described in Section 2.3. When an

input group is found, the filled user data may be overwritten

with its concept name. The user data filler function fills user

data corresponding to the selected concept name. Figure 5

shows an example of a sequence between a Web browser, a

proxy for automatic form filling in Web forms, and a Web serv-

er, and proxy implementation procedures.

The advantages of this system are described below.

1) The proxy architecture allows the use of existing Web

browsers and Web servers.

2) The proxy for form filling creates a dynamic rule in an opti-

mized manner suitable for resource-scarce mobile terminals,

based on a given set of context information related to the tar-

get input field on currently accessed Web pages and a list of

pre-defined rules (as a result of the analysis of a large num-

ber of Web forms).

3) User data is stored and used locally on the mobile terminal to

ensure privacy.

4) Automatically filled Web forms are displayed on the mobile

terminal, enabling deletion and edition of data by user manu-

ally before being sent to the Web server.

4. Prototype Development and Evaluation
An English version of the prototype was developed as a Web

browser proxy function using the Java 2 Micro Edition (J2ME
TM

)
*7

on the Nokia 60 Series. Figure 6 shows examples of a screen

display when manually setting user data as a user profile to be

stored on a mobile terminal and an automatically filled down-

loaded Web form. The algorithm has been verified as running

on a resource-scarce mobile terminal with this prototype.

Furthermore, the prototype supporting both English and

*6 Object: An expression of something existing as an entity or concept in the real
world in a form able to be handled in a program. Expressed as a combination of
data describing its attributes, and manipulation of the entity.

Mobile
terminal

 Proxy

User data Rules

Web
browser

Form Filler

HTML
parser
(object

generation)

Rule
inspector

User
data
filler

Web
server

Figure 4 System architecture for Automatic Form Filling (example)

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 28

Japanese has been developed as a proxy for Web browsers

using Java 2 Standard Edition (J2SE
TM

)
*8

v1.4.2 on a PC.

Concept names for name (full name, last name, first name in

kanji, hiragana, and katakana), address (postal code, state, city,

town, etc.), date of birth, email address (general, mobile), gen-

der, phone number (fixed line, mobile), fax number, credit card

details, and professional details are supported. More than 120

Web pages were analyzed for Japanese, and rules accommodat-

ing the <input> and <select> tags were generated.

An evaluation was made to determine the accuracy rate for

automatic filling when using the prototype on a PC. Fifty Web

sites not previously used for the generation of rules were ran-

domly selected from a variety of different areas (e.g., Internet

shopping, travel, hotels, membership registration) for both

English and Japanese. The correct data was filled in 96.2% of

all input fields for English, and in 79.0% for Japanese. These

are the most accurate figures among all such commercial auto-

matic form filling tools available for PCs, and represent a

marked improvement over competitive products able to accom-

modate such a large number of concept names. The system is

particularly suited to katakana names where input groups are

applicable, achieving an improvement of more than 20% in

accuracy rate in comparison with competing products.

5. Conclusion
This article has described a simple algorithm for the

Automatic Form Filling function (regarding the generation of

rules based on analysis of input fields on Internet Web pages)

running on a mobile terminal, and an overview of the system.

The algorithm relies on a set of pre-defined rules generated by

analyzing a number of internet Web forms, and creates a

dynamic rule by analyzing context information in a given Web

form and selecting applicable rules. Also presented were the

results of evaluating the accuracy rate of the English and

Japanese versions using a prototype, which revealed a signifi-

cant improvement over competitive products developed for

PCs.

29

NTT DoCoMo Technical Journal Vol. 8 No.4

*7 J2ME™: A function set of the Java language. Reduces the consumption of
resources for embedded devices.
J2ME and all Java-related trademarks and logos are trademarks and registered
trademarks of Sun Microsystems, Inc. of the United States of America in the USA
and other countries.

*8 J2SE™: A function set of the Java language. A collection of standard functions
forming a foundation for network client devices (e.g., PCs).
J2SE and all Java-related trademarks and logos are trademarks and registered
trademarks of Sun Microsystems, Inc. of the United States of America in the USA
and other countries.

(a) Screen display when
entering user data (example)

(b) Automatically entered
Web form (example)

Dake

Docomo

Chiyodaku Nagatacho2-11-1

100-0014

Tokyo

03-1234-4321

docomodake@docomo.co.jp

Figure 6 English-language prototype on mobile terminal

Proxy Web serverWeb browser

Step 1 Parse HTML
• Detect HTML encoding.
• Generate object structure using the HTML parser.
• Detect input group with the HTML parser.

Step 2 Automatic Form Filling using basic rule list
• Select rules using the rule inspector function.
• Sum probability values for each concept name using the rule inspector function, and select concept name with highest probability.
• Enter user data using the user data filler function.

Step 3 Automatic Form Filling using group rules
• Select Input Group Rules using the rule inspector function, and determine group concept name.
• Select Inner Group Rules using the rule inspector function, and determine concept name for each input field.
• Enter user data using the user data filler function.

HTTP request

HTTP response

HTTP request

HTTP response

Figure 5 Sequence (example)

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 29

Future work will involve the evaluation of usability aspects

other than the accuracy rate in order to improve ease of use

(such as comparing time and the number of required strokes

when using a prediction and conversion engine on a mobile ter-

minal), and the user interface (such as for the visualization of

uncertainty [3]).

The Automatic Form Filling function compatible with exist-

ing Web forms can be applied as an extension of DoCoMo’s

‘My Profile’ running on some devices in the 903i Series while

sharing previously registered user data.

References
[1] IETF: ECMA (Electronic Commerce Modeling Languages), http://

www.ietf.org/rfc/rfc3106.txt

[2] T. Chusho, K. Fujiwara and K. Minamitani: “Automatic Filling in a Form

by an Agent for Web Applications,” Asia-Pacific Software Engineering

Conference 2002, IEEE Computer Society, pp.239-247, 2002.

[3] E. Rukzio, J. Hamard, C. Noda and A. De Luca: “Visualization of

Uncertainty in Context Aware Mobile Applications,” 8th International

Conference on Human Computer Interaction with Mobile Devices and

Services (MobileHCI 2006), Espoo, Finland, Sep. 2006.

30

644_s[24-30].ps/3.3 07.3.20 2:35 PM ページ 30

