
40

1. Introduction
Since the i-mode service was introduced in 1999, the mobile

terminal services have migrated gradually from voice communi-

cation services to data communication services, such as brows-

ing Web sites, sending/receiving e-mails and downloading con-

tents such as ringtone and Java
*2

applications. Moreover, in

Freedom Of Mobile multimedia Access (FOMA) terminals,

which were introduced in 2001, video/visual services such as

video phone and i-motion have been launched, which take

advantage of high-speed data communication.

In order to achieve such diversified and sophisticated ser-

vices, mobile terminal software has become increasingly com-

plicated and the development scale has increased explosively.

This complexity of mobile terminal software and increased

development scale are placing significant burdens on mobile

terminal vendors and DoCoMo in terms of resources devoted to

the analysis and development period, as well as for securing

software quality.

As a solution to these problems, DoCoMo has developed

Mobilephone Oriented Application Platform (MOAP), a soft-

ware platform that can be used commonly by multiple mobile

terminal vendors and software vendors when developing mobile

terminal software.

This article provides an overview of the development of

MOAP, introduced in November 2004.

“MOAP,” Software
Platform for

FOMA Terminals

We have developed “MOAP,” a software platform for Linux

OS and Symbian OS
*1

which can be used for FOMA terminal

software development. This platform makes it possible to

improve the quality of the software, reduce costs and shorten

the development period.

Hiroyuki Tsuji, Keisuke Ohno and Tetsu Saito

*1 Symbian OS and all trademarks and logos related to Symbian are trademarks or registered trade-

marks of Symbian Ltd.

*2 Java: Object oriented development environment specifically designed for networking advocated

by Sun Microsystems in the US.

ノート
We have developed “MOAP,” a software platform for Linux OS and Symbian OS*1 which can be used for FOMA terminal software development. This platform makes it possible to improve the quality of the software, reduce costs and shorten the development period.

2. Issues in Software Development for
Mobile Terminals

In conventional development, mobile terminal vendors

developed all parts of the mobile terminal software by them-

selves, including applications, middleware, Operating System

(OS) and device drivers. As the services to be supported

increase and become more diversified, however, it is becoming

increasingly difficult for a single company to develop all the

necessary pieces of software within a limited development peri-

od. For this reason, most mobile terminal vendors have begun to

purchase parts of the software from software vendors and install

it in the terminals.

However, when implementing applications created by soft-

ware vendors, it becomes necessary to develop additional spe-

cial interfaces to middleware already implemented by the

mobile terminal vendors. This represents a large burden for the

software vendors. Moreover, as applications become more and

more sophisticated, the middleware software itself becomes

increasingly complicated, and the development scale grows; the

burden of the accompanying maintenance tasks cannot be taken

lightly anymore either (Figure 1). Under these conditions, it is

necessary to make mobile terminal software development sub-

stantially more efficient in order to be able to develop and pro-

vide advanced services in the future as well.

Given these factors, it is clear that the development scale of

mobile terminal software can be reduced by sharing the infra-

structure software including OS and middleware between

mobile terminal vendors, or at least reusing it for several mobile

terminal models, as shown in Figure 2. This eliminates the

need for development of interfaces between applications created

by software vendors and specific middleware required for indi-

vidual mobile terminal vendors, allowing for an improvement of

Quality, Cost and Delivery (QCD) in mobile terminal develop-

ment.

We thus developed “MOAP,” a software platform that can

be used commonly by multiple mobile terminal vendors and

software vendors in order to solve the problems in mobile ter-

minal software development outlined above.

3. Software Platform
3.1 Advanced OS

When considering enrichment of functions in mobile termi-

nal software, a serious issue is the functions provided by the

OS, its base. Conventionally, Real Time Operating Systems

(RTOS) such as µITRON (µ Industrial TRON) have been used

in mobile terminals because they allowed developing highly

responsive applications by emphasizing the real time perfor-

mance and efficiently utilizing small, low-power Central

Processing Units (CPU).

However, RTOSs lack support for stable execution of multi-

ple applications and are not equipped with sufficient utilities;

hence, special knowledge and skills are required in develop-

ment, which is a drawback.

For this reason, taking improvement of development effi-

ciency and support for future advanced hardware into consider-

41

NTT DoCoMo Technical Journal Vol. 7 No.1

AP AP AP AP AP

Middleware Middleware

OS OS

Device driver Device driver

Mobile terminal vendor A Mobile terminal vendor B

Software vendor

AP

Maintenance
tasks increase in
parallel with
the increase of
the middleware
development
scale

AP...APplication

Development of
interface with
middleware is
required

Figure 1 Conventional development of mobile terminals

AP AP AP

Middleware

OS

Device driver

Mobile terminal vendor A

AP AP AP

Middleware

OS

Device driver

Mobile terminal vendor B

Software vendor

Common
(MOAP)

The development
scale of new
software and
maintenance tasks
can be reduced

No need to
modify
interface with
middleware

Figure 2 Development of mobile terminals with MOAP

ation, we decided to adopt the sophisticated OSs “Linux OS”

and “Symbian OS,” which are highly expandable and offer sup-

port for various software management functions as standard

such as multi-threading and memory protection, allowing safe

execution of multiple applications, as OSs for MOAP. We thus

built “MOAP (L),” a platform based on Linux OS, and “MOAP

(S),” a platform based on Symbian OS.

3.2 Middleware

In MOAP, the following middleware was implemented

based on Linux and Symbian OS mentioned above.

1) User Interface (UI)

In addition to general UI functions including operations via

displayed components such as windows, buttons, list boxes and

the keyboard, MOAP provides UI functions unique to mobile

terminals such as keeping a button pressed in order to achieve

sufficient operability solely with the numeric pad and cursor

keys. MOAP allows development of applications supporting

operations unique to mobile terminals by using these functions.

MOAP (L) supports such functions through customized ver-

sions of X-Window and Gimp ToolKit+ (GTK+) widely used in

Linux OS. MOAP (S) supports these functions by building

unique object oriented libraries on top of the UI toolkits provid-

ed by the OS.

2) Application Management

In mobile terminals, it is necessary to coordinate the opera-

tions of multiple applications, such as phone book and mail

applications. For this reason, MOAP is equipped with functions

for executing application startup and close processing triggered

by an operation of the keys and reception of a call, communica-

tion functions for exchanging data among applications, exclu-

sive management functions used when multiple applications

take turns using the Liquid Crystal Display (LCD) screen and

speakers and sequence management functions used during start-

up and shutdown of the mobile terminal. In addition, it has a

function that monitors the operation status of applications at all

times, which detects failure promptly and records any failure

information if an abnormal condition occurs.

3) Storage Management

As the resolution of cameras and the amounts of video and

music contents handled by the mobile terminals grow, the

amounts of data that must be processed by the mobile terminal

applications are ballooning. Accordingly, the selection of stor-

age devices mounted in mobile terminals is becoming increas-

ingly diversified as SD Memory Card and Memory Stick are

adopted in addition to the built-in flash memory.

MOAP provide unified functions for writing, reading and

deleting data for this wide array of storage devices.

4) Device Status Management

Mobile terminal applications are required to recognize the

open/close status of a folding-type mobile terminal, radio signal

strength and remaining battery, silent mode, terminal lock, etc.,

and to take appropriate actions accordingly to this information.

MOAP provides a device status management function that

manages such information centrally so that each application

does not need to manage it individually. Moreover, changes to

any status, e.g., open/close of a mobile terminal, are automati-

cally notified to applications requiring such information.

5) Communication Functions Using Mobile Communication

Networks

Communication using mobile communication networks is

divided into several types including circuit switching-based

communication such as voice and video phone communication

and packet switching-based communication such as i-mode, and

each type requires special control and processing.

MOAP provides control functions necessary for each com-

munication type. For example, in circuit switching-based com-

munication, MOAP provides setting functions for additional

services, including answering machine and drive modes. For

packet switching-based communication, a function that controls

opening and closing of packet communication channels is pro-

vided, among others.

6) Icon Management

Various icons are displayed on the LCD screen in order to

notify the status of the mobile terminal, such as radio field

strength, remaining battery, mounting of external memory,

reception of mails, unread mails, Secure Sockets Layer (SSL)

and infrared communication.

In order to implement this mechanism in an integrated man-

ner, MOAP is equipped with a function for displaying and

updating icons automatically according to the status changes.

3.3 Development Environment

In order to help mobile terminal vendors and software ven-

dors exploit the enriched OS and middleware environment dis-

cussed above in their application development, MOAP provides

a development environment for software in addition to the

mobile terminal software itself. By making use of this develop-

42

ment environment, it is possible to carry out efficient applica-

tion development on PCs.

MOAP (L) allows using editors, debuggers, configuration

management tools, etc. that are available on Linux OS. On

MOAP (S), Visual C++
®*3

, Microsoft’s integrated development

environment, and related products can be used. Moreover, each

platform provides a mobile terminal emulator so that the applica-

tions can be tested in a PC environment, allowing for easy confir-

mation of the operations of the software on the mobile terminals.

Photo 1 shows the mobile terminal emulator of MOAP (L).

4. Conclusion
This article provided an overview of MOAP, which was

developed in order to accommodate the increasing complexity

and growing development scale of mobile terminal software.

MOAP improves the development efficiency by providing com-

mon functions required for mobile terminal software develop-

ment and is already being applied in the FOMA 901i series.

It will become important to enrich MOAP’s common func-

tions further and make sure to provide it to mobile terminal ven-

dors and software vendors in a timely manner in order to pro-

mote a more efficient development of DoCoMo’s mobile termi-

nals, which are becoming more and more sophisticated and

complicated.

In the future development of this software platform, we

intend to examine how to perform abstraction of the hardware

layer and reinforcement of multi-platform compatibility by hid-

ing the differences of hardware and OS using middleware, as

well as pursue international rollout by supporting multiple lan-

guages and overseas specifications using middleware.

43

NTT DoCoMo Technical Journal Vol. 7 No.1

Photo 1 MOAP (L) mobile terminal emulator

CPU: Central Processing Unit

FOMA: Freedom Of Mobile multimedia Access

GTK+: Gimp ToolKit+

LCD: Liquid Crystal Display

MOAP: Mobilephone Oriented Application Platform

µITRON: µ Industrial TRON

OS: Operating System

QCD: Quality, Cost and Delivery

RTOS: Real Time Operating System

SSL: Secure Sockets Layer

UI: User Interface

Abbreviations

o
,
t

-
.

*3 Visual C++
®

is a registered trademark or trademark of Microsoft Corporation in the US or other

countries.

*This function is provided in Japanese only.

