
4

1. Introduction
Mobile terminals are evolving rapidly in performance,

capacity, and functions while broadband wireless access,

reduced fees, and fixed-rate services continue to expand.

Unimaginable applications and content in the past are now

appearing one after another, and their enhancements and expan-

sions are expected in the years to come. In short, mobile termi-

nals are becoming capable of diverse applications, and under

continuous-connection conditions, they should be able to not

only receive services as a client but also to provide various

types of services. We can foresee a mobile terminal used as an

information-providing server in response to an external request

and a group of mobile terminals connected in a Peer to Peer

(P2P) mutually equal type, which should lead to new service

formats.

Mobile terminals, however, are susceptible to suspended

services since wireless links can disconnect under certain cir-

cumstances. In comparison to fixed nodes like personal comput-

ers, this greatly limits processing power and the types of ser-

vices that can be provided. To overcome this instability of wire-

less links and to compensate for the relatively low processing

power of mobile terminals, it is essential to improve terminal

performance and wireless technology and upgrade facilities, but

these measures in themselves would not completely make up for

the limitations of mobile terminals. This article introduces Twin

Agents [1] architecture and its programming model as a net-

work-assisted mobile terminal support technology for offsetting

Network-Assisted Mobile
Terminal Support Technology

The processing power of mobile terminals is greatly limited

due to wireless links that disconnect under certain conditions

of service interuption. This article introduces a mobile termi-

nal support technology called “Twin Agents” that aims to

solve this problem. In Twin Agents architecture, a proxy node

representing the mobile terminal is placed on the network

side to enable distributed processing and disconnected oper-

ations to be performed as needed.

Daisuke Ochi, Kenichi Yamazaki and Satoshi Tanaka

ノート
The processing power of mobile terminals is greatly limited due to wireless links that disconnect under certain conditions of service interuption. This article introduces a mobile terminal support technology called “Twin Agents” that aims to solve this problem. In Twin Agents architecture, a proxy node representing the mobile terminal is placed on the network side to enable distributed processing and disconnected operations to be performed as needed.

5

NTT DoCoMo Technical Journal Vol. 6 No.4

these limitations from the software side. In Twin Agents, a

proxy node that acts for the mobile terminal is placed on the

network side, and a program-execution environment is provided

to enable cooperative operations between the proxy node and

mobile terminal. Here, by introducing a mechanism for syn-

chronous activation and execution of a proxy node program and

a mobile terminal program, and a mechanism for adaptively

changing proxy node and mobile terminal processing according

to the state of the wireless link and that of other resources, a

mobile terminal user can achieve program-load distributed pro-

cessing and disconnected operations as needed.

The below presents a detailed description of Twin Agents

architecture and an application example.

2. Requirements of Twin Agents
Architecture

The characteristics of mobile terminals have the following

limitations with regard to diversified service formats of the

future.

• The very nature of mobile communications makes for unsta-

ble wireless links under certain conditions with disconnec-

tion occurring in the worst case scenario. It is also difficult

to completely eliminate out-of-range areas.

• Because the processing power of mobile terminals is low

compared to personal computers, the types of content and

services that can be used are limited. Similarly, mobile ter-

minals cannot be operated in server or P2P types without

difficulty.

To overcome the above limitations, Twin Agents must satis-

fy the following requirements.

1) Retain Connection

To achieve stable communications, the application running

on the mobile terminal and the correspondent node must be able

to communicate even in the event of a wireless-link disconnec-

tion. Although communication is not actually possible while a

wireless link is down, communication from an application

standpoint can be maintained transparently by maintaining a

session connection.

2) Perform Processing at Time of Disconnection

To minimize the effects of a disconnected wireless link and

to continue the session, the mobile terminal and correspondent

node must be able to receive alternate services through special

processing at the time of a disconnection.

3) Achieve Service and Resource Independence

A mobile terminal must be able to receive and provide ser-

vices independent of its processing power.

To satisfy the above requirements, Twin Agents architecture

also makes use of non-mobile terminals to ensure retention of

the communication session and continuity of services through

disconnected operations, to substitute the processing power of

mobile terminals.

3. Design of Twin Agents Architecture
To satisfy the requirements described in Chapter 2, Twin

Agents places a proxy node on the network side dedicated to the

mobile terminal in question and provides a mechanism for dis-

tributed processing between the proxy node and mobile terminal

(Figure 1). In particular, the proxy node is placed between the

highly stable core network and relatively unstable wireless net-

work to provide a program execution environment and data

storage function necessary for interacting with the mobile termi-

nal. The mobile terminal, in turn, communicates with the corre-

spondent node via the proxy node. The introduction of a proxy

node in this way means that the proxy node can continue com-

munications in place of the mobile terminal if the wireless link

becomes disconnected. It also means that the proxy node can

perform some of the mobile terminal’s processing in a coopera-

tive fashion to supplement the processing power of the mobile

terminal.

Cooperation between the proxy node and mobile terminal is

achieved by middleware installed on both sides. The middle-

ware on the proxy node side is called Network side Agent

(NsA) and that on the mobile terminal side is called User side

Agent (UsA). This NsA and UsA configure a single virtual ter-

minal that is basically recognized by the correspondent node as

the communicating partner without being conscious of the NsA

and UsA.

The NsA and UsA can each run a program. A program exe-

cuting under such an environment is called a “Taplet,” which

can be programmed either personally or by an Application

Service Provider (ASP), for example. For any one application,

there are two Taplets, one inside the NsA and the other inside

the UsA, which are created as a pair by a programmer. These

Taplets can be installed and executed as desired by the mobile

terminal user.

These two Taplets operate in a cooperative manner (cooper-

ative mode) when a link is established between the NsA and

UsA or in an independent manner (autonomous mode) when the

link is disconnected. In other words, Taplet operation switches

from cooperative mode to autonomous mode when a link

becomes disconnected so that processing can continue in an

alternative way for the mobile terminal user and the correspon-

dent node. In this way, efforts to deal with the disconnection of

an unstable wireless link can be isolated between the NsA and

UsA, and the correspondent node can continue its session with-

out having to worry about instability on the mobile terminal

side. This scenario corresponds with requirements 1) and 2) in

Chapter 2.

A Taplet can also be described to perform distributed pro-

cessing using the storage facilities and the central processing

unit (CPU) on the proxy node to supplement the processing

power of the mobile terminal. This enables the correspondent

node to communicate without concerning the processing power

of the mobile terminal, which corresponds to requirement 3) in

Chapter 2. Placing a server-type program in the NsA, moreover,

enables the virtual terminal to operate like a server at the time

of a link disconnection.

In addition to link state, Taplet operation can be switched in

response to other mobile terminal resource states (such as

remaining battery capacity).

Twin Agents is equipped with the features described above.

Implementing these features in both the NsA and UsA elimi-

nates the need to alter the correspondent node.

4. Technical Issues and Functions
The following technical issues must be addressed in achiev-

ing the Twin Agents scheme described in Chapter 3.

1) Means of synchronizing and executing the programs on the

proxy node and mobile terminal.

2) Means of concealing disconnection of actual connection and

disclosing it to the application if necessary without signifi-

cantly changing the conventional socket interface.

3) Means of simplifying program description of proxy node

NsA despite the fact that changing between cooperative

mode and autonomous mode makes the program somewhat

complicated.

4) Means of keeping NsA and UsA in a non-contradictory state

in the event of a disconnection during data transfer.

The following describes each of the elements making up

Twin Agents focusing on the above technical issues. Figure 2

shows an overview of Twin Agents architecture.

1) Application Manager

Each of the two application managers installs a Taplet in its

corresponding agent (NsA or UsA) and manages Taplet version

number. They also manage Taplet execution and the simultane-

ous activation and termination of those two Taplets. To prevent

conflict in activation state and version number and to solve

technical issue 1) above, these application managers exchange

Taplet management information held by the NsA and UsA.

6

Taplet
Taplet /

Proxy Taplet

NsA UsA

Virtual terminal

Correspondent
node

Core network

Proxy node Mobile terminal

Wireless link

Taplet-distribution server
(ASP, etc.)

Can be installed as desired
by mobile-terminal user

Can be installed as desired
by mobile-terminal user

Figure 1 Twin Agents overview

7

NTT DoCoMo Technical Journal Vol. 6 No.4

2) Connection Manager

The connection managers manage the creation and cancella-

tion of the connection between NsA and UsA and the connec-

tion manager on the proxy node side manages that of the con-

nection between NsA and the correspondent node. They also

manage the Persistent Socket ID (PSID) described below.

3) Persistent Socket

The Persistent Socket can switch from cooperative to

autonomous mode to support processing at the time of a discon-

nection. Figure 3 shows an overview of the Persistent Socket.

This is a communication socket created only between NsA and

UsA. It automatically maintains a virtual connection between

the two Taplets during link disconnection and reestablishes an

actual connection between NsA and UsA when that becomes

possible.

Twin Agents makes use of an original PSID to identify the

connection between NsA and UsA. This identifier is indepen-

dent of lower-level transmission protocol (such as Transmission

Control Protocol/Internet Protocol (TCP/IP)), which enables

Taplet connection to be removed from any change to link status

such as a disconnection of the NsA/UsA link, change or nullifi-

cation of the mobile terminal network interface, and change of

the mobile terminal address.

Twin Agents also describes a cooperative and autonomous

mode using a programming model prescribed by Persistent

Socket, and enables switching of Taplet operation according to

link status. And for each mode, it can separately describe pro-

cessing in that mode (ongoing operation) and processing for

switching that mode to the other mode (changing operation).

This provides a clear distinction between a common and auto-

mated application section and an application-specific section,

and simplifies the description of Taplet operation at the time of

a disconnection. A “Persistent Socket,” moreover, is simply an

extension of a general-purpose communication program module

called a “socket,” which means that it can be treated in much

the same way as an ordinary socket.

A Persistent Socket therefore solves technical issue 2).

4) Proxy Taplet

A proxy generally refers to functions for storing, converting,

and transferring data at a node placed along a communication

Virtual terminal

Taplet

UsA

Application
Taplet / Proxy Taplet

Correspondent
node

Persistent Socket Persistent Socket

Application manager Application manager

Connection manager Connection manager

Node-information manager Node-information manager

Network storage Network storageIn
te

r-
ag

en
t

co
m

m
un

ic
at

io
n

se
ct

io
n

In
te

r-
ag

en
t

co
m

m
un

ic
at

io
n

se
ct

io
n

NsA

Proxy node

Application

Mobile terminal

 : Described by application programmer

 : Twin Agents functions

Figure 2 Twin Agents architecture

path. A Taplet in the NsA often has a proxy-like role with

respect to the Taplet in the UsA. A Proxy Taplet provides com-

mon functions required by programs in the NsA for converting

and transferring data, plus a description model for the section

dependent on the application. These common functions are

achieved by a program module equipped with common proxy

functions as a Taplet extension.

Common functions include one for data exchange with the

UsA and the correspondent node and one for assessing input

data and processing it accordingly. Using and extending the

Proxy Taplet in this way simplifies the use of such functions

thereby solving technical issue 3).

Figure 4 shows an overview of the Proxy Taplet. Here, the

UsA Taplet can maintain a communication session with the cor-

respondent node by starting up the NsA Proxy Taplet or its pro-

gram-module extension via a program module called a “Proxy

Connector.” A programmer can extend data transfer processing

in the Proxy Taplet and data send/receive processing in the

proxy connector as desired. This makes it possible to perform

some type of encoding at the Proxy Taplet and corresponding

decoding at the proxy connector.

Twin Agents also allows for the preparation of multiple

Proxy Taplets in accordance with the level of functional imple-

mentation desired. For example, a “Unit Proxy Taplet” extends

the Proxy Taplet to provide a general-purpose Proxy Taplet

equipped with a function for guaranteeing fixed units of com-

munication. A unit Proxy Taplet can therefore be used to solve

technical issue 4). A programmer is free to select and extend

Proxy Taplets for the purpose at hand.

5) Node-Information Manager

A node-information manager manages information on static

and dynamic resources possessed by the proxy node or mobile

terminal. Static-resource information includes CPU processing

power, storage capacity, available network media, input/output

capabilities (display resolution, input/output devices, etc.), and

type of power supply. Dynamic-resource information includes

CPU load, remaining storage capacity, state of communications

(network load, radio intensity, communication mode, etc.),

remaining battery capacity, mobile terminal location, and

mobile terminal state (such as manner mode). The above infor-

mation can be used to modify Taplet operation according to cur-

rent conditions. For example, Taplet operation could be made to

8

Virtual terminal

NsA

Application

UsA

Application

Taplet / Proxy Taplet

Persistent Socket

Cooperative-mode
ongoing operation

Cooperative-mode
changing operation

 Autonomous-mode
changing operation

Autonomous-mode
ongoing operation

Taplet

Persistent Socket

Cooperative-mode
ongoing operation

Autonomous-mode
ongoing operation

Virtual connection

Actual connection (TCP, etc.)

 : Described by application programmer

 : Functions described here

 : Actual data flow

Persistent Socket automatically
connects and reconnects the
actual connection

Switches between cooperative
and autonomous modes
according to link state

Appears as a stable virtual
connection to Taplets

Cooperative-mode
changing operation

 Autonomous-mode
changing operation

Figure 3 Overview of Persistent Socket

9

NTT DoCoMo Technical Journal Vol. 6 No.4

vary according to the mobile terminal’s remaining battery

capacity.

6) Network Storage

Because the NsA and UsA form a single virtual terminal, there

is a need to save common information. Twin Agents provides net-

work storage that can be accessed by both NsA and UsA programs

by a common access technique to maintain data consistency.

Twin Agents is configured by the above group of functions

enabling the instability of wireless links to be overcome and

providing a mechanism in the form of Taplets for offsetting the

relatively low processing power of mobile terminals. While the

above description assumes only one NsA in the proxy node,

multiple NsAs may also be used.

5. Twin Agents Application Example
and Evaluation

Since Twin Agents operates independently of any particular

protocol, it is general enough to be used for a wide range of

applications that involve disconnected operations and distributed

processing. The tool group provided by Twin Agents, moreover,

can accommodate low-level to high-level Application Program

Interfaces (APIs) making it relatively easy to create complex

processing. The following describes typical kinds of applica-

tions that can be achieved by Twin Agents and evaluates a

video conference application as one specific example.

5.1 Types of Applications

As a platform that can supplement the relatively low pro-

cessing power of mobile terminals, Twin Agents can do more

than simply provide special processing at the time of a discon-

nection. Applications using Twin Agents can be classified into

several application types as described below. Many applications

targeted by Twin Agents are actually composites of these appli-

cation types.

1) Disconnected Operation Type

Performs some sort of processing at a proxy node (such as a

relay node) either during or in preparation for a disconnection

of a mobile terminal link. This type can be further divided, such

as into an application type that provides a proxy response (e.g.,

out-of-range message, redirection to Web) for the mobile termi-

nal to the correspondent node; one that transfers communica-

tions to another node (e.g., call transfer service, mail transfer

service); and one that saves communications (e.g., answering

service, service for saving history of received calls).

2) Communication Recording Type

Stores the contents of a call between the mobile terminal and

Virtual terminal

NsA

Application

UsA

Application

Persistent Socket

Correspondent
node

Persistent Socket
connection

Socket Persistent Socket

Proxy Taplet

Proxy Connector

Taplet

Data transfer processing

 : Described by application programmer
 : Functions described here
 : Actual data flow

Proxy Taplet is automatically created
on creation of proxy connector

Data send/
receive processing

Figure 4 Overview of Proxy Taplet

correspondent node or saves node information (of the mobile ter-

minal, for example) at a proxy node. Applications that have sub-

sequent need for such stored history can be considered, such as

an application that plays back a stored call at a later date.

3) Communication Conversion Type

Converts the communication contents passed between the

mobile terminal and correspondent node into another format at a

proxy node. This might consist of encryption, communication-

path multiplexing, and media conversion, for example.

4) Substitute Processing Type

Performs a task that needs to be done by the mobile terminal

at a proxy node to distribute mobile terminal load or reduce

costs. Some examples are proxy authentication, proxy informa-

tion collection, and proxy information dispatching. Here, if the

mobile terminal is placed in charge of only the user interface

(UI) section, it can be treated as a controller of the proxy node.

All of the above application types can be achieved using

Twin Agents. As mentioned above, there are also applications

that can combine these elemental application types. Video con-

ference and online real-time games are two key examples.

These are considered to be easily achieved using Twin Agents

architecture.

5.2 Implementation of Video Conference Application

We created a video conference application for three parties

to demonstrate the advantages of Twin Agents. Figure 5 shows

the network configuration of this application. The three parties

are connected in a P2P scheme with one of them implemented

on Twin Agents (on a virtual terminal). Here, correspondent

nodes A and B correspond to conventional video conference

applications that do not consider disconnected operations.

In this video conference application using Twin Agents,

both the NsA and UsA are equipped with a Taplet. Twin Agents

includes a Proxy Taplet that can store received data (Buffering

Proxy Taplet), while the NsA Taplet here extends that Taplet to

implement a proxy response function for times of disconnec-

tion.

This application can achieve the following operations that

were difficult for conventional video conference applications.

1) Operation during link disconnection (autonomous-mode

ongoing operation)

• NsA maintains a connection with correspondent nodes A

and B.

• NsA stores all multimedia information (video, audio, text,

etc.) sent by correspondent nodes A and B.

• NsA sends proxy video to correspondent nodes A and B in

place of the mobile terminal user’s picture.

• NsA performs a proxy response to inquiries (schedule, etc.)

from correspondent nodes A and B in place of the mobile

terminal user.

• UsA stores multimedia information input by the mobile ter-

minal user.

2) Operation at link restoration (cooperative-mode changing

operation)

• UsA and NsA notify each other of multimedia information

that each has saved and immediately plays back that infor-

mation to resynchronize.

The virtual terminal user and users of correspondent nodes

A and B can therefore continue conferencing without losing any

part of their three-way video conference.

In addition to the above disconnection assistance, Twin

Agents can assist the mobile terminal even during the normal

10

Video conference peer (virtual terminal)

Video conference peer
(Correspondent node A)

Video conference peer
(Correspondent node B)

NsA

Video conference
Proxy Taplet

UsA

Video conference
Taplet

Figure 5 Network configuration of video conference application

11

NTT DoCoMo Technical Journal Vol. 6 No.4

operation. For example, video and audio sent by correspondent

nodes A and B can be combined and compressed before trans-

mitting to the mobile terminal, or that it can be converted to a

data format supported by the mobile terminal. Transmitted

video can even be recorded in real time. Since any media con-

version here is performed at the NsA, correspondent nodes can

transmit in general-purpose formats without having to worry

about the functional limitations of the mobile terminal.

It can be seen from the above that Twin Agents can achieve

at least the disconnected-operations, information-storage, and

information-processing types of applications.

In this implementation of a video conference application, we

found that the amount of coding required for the communication

and proxy sections could be reduced by about 20% through by

using a Persistent Socket and Proxy Taplet compared to pro-

cessing described without them. We also found that coding

could be reduced by about 30% for an IRC (Internet Relay Chat

protocol) [2] client software that we created as another applica-

tion for evaluation purposes.

The above applications demonstrate that a Persistent Socket

and Proxy Taplet can be applied to various applications and that

their use can simplify programming.

6. Related Works
Rover [3], Odyssey [4], and Mervlet [5] are tools for con-

structing mobile-transparency and mobile-recognition applica-

tions. Though their objective is similar to that of Twin Agents,

they are end-to-end-type systems that require server-side sup-

port. They are also systems that move server-control process

code to the client for processing and synchronizing purposes,

which means that they basically target disconnected operations

for server control only—they cannot provide disconnected oper-

ations for client control. Furthermore, the mobile terminal in

these systems is assumed to operate as a client. In contrast,

Twin Agents enables disconnected operations for client control

enabling the mobile terminal to operate also as a server.

In addition, the World Wide Web (WWW) information-dis-

patching system [6] proposes a mechanism for stable provision

of information even if the mobile terminal should be disconnect

from the network. This information, however, is limited to

Web-based information preventing flexible disconnected opera-

tions from being performed. Twin Agents is not limited to the

Web—it can provide diversified services in a flexible and stable

manner via a virtual terminal.

7. Conclusion
This article described Twin Agents architecture as a means

of dealing with the instability of wireless links and the low pro-

cessing power of mobile terminals in the provision and recep-

tion of services with mobile terminals. Twin Agents solves

these problems by flexible disconnected operations in response

to current link conditions and by distributed processing between

a proxy node and mobile terminal. This architecture simplifies

program description for distributed processing between the

proxy node and mobile terminal by using a Persistent Socket

and Proxy Taplet. The former conceals the effects of a link dis-

connection and allows description of disconnected operations,

while the latter conceals the operation of basic proxy functions.

Twin Agents architecture is applicable to not only mobile termi-

nals but also to fixed nodes such as desktop personal computers

that use dial-up connections.

In addition to providing assistance at the time of a link dis-

connection, Twin Agents can be used for other service types

such as substitute processing, communication conversion, and

communication recording. It enables a proxy node on the net-

work to assist a mobile terminal and provide it with additional

power thereby easing the resource limitations of the mobile ter-

minal and making use of a mobile terminal more convenient for

the user.

With the coming of a ubiquitous computing [7] environ-

ment, we plan to broaden our research to include information

appliances and sensor networks in addition to virtual terminals

and mobile terminals. We are to expand Twin Agents architec-

ture to provide an adaptive application environment that can

assist sensors and other devices that are even more powerless

than mobile terminals.

References
[1] D. Ochi and K. Yamazaki: “Twin Agents: Network-assisted Disconnected

Operation and Distributed Processing for Mobile Communication,” Proc.

of IEEE Symposium on Applications and the Internet 2004 (SAINT2004),

Jan. 2004.

[2] J. Oikarinen and D. Reed: “Internet Relay Chat Protocol,” RFC 1459,

May 1993.

[3] A. D. Joseph, J. A. Tauber and M. F. Kaashoek: “Mobile computing with

the Rover toolkit,” IEEE Transactions on Computers, Special Issue on

Mobile Computing, Vol. 46, No. 3, pp. 337–352, Mar. 1997.

[4] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn and

K. R. Walker: “Agile Application-Aware Adaptation for Mobility,” Proc.

the 16th ACM Symposium on Operating System Principles (SOSP-16),

pp. 276–287, Oct. 1997.

[5] N. Islam, D. Zhou, S. Shahid, A. Ismael and S. Kizhakkiniyil: “AOE: A

Mobile Operating Environment for Web-based Applications,” Proc.of

IEEE Symposium on Applications and the Internet 2004 (SAINT2004),

Jan. 2004.

[6] S. Tagashira, et al.: “Adapting a Mobile Information Announcement

System for Network Connectivity,” Proc. 1999 International Conference

on Parallel and Distributed Processing Techniques and Applications

(PDPTA ’99), Vol. 2, pp. 970–976, Jun. 1999.

[7] Mark Weiser: “The computer for the 21st century,” Scientific American,

pp. 94–104, Sep. 1991.

12

API: Application Program Interface

ASP: Application Service Provider

CPU: Central Processing Unit

IRC: Internet Relay Chat protocol

NsA: Network side Agent

P2P: Peer to Peer

PSID: Persistent Socket ID

TCP/IP: Transmission Control Protocol/Internet Protocol

UI: User Interface

UsA: User side Agent

WWW: World Wide Web

Abbreviations

