
14

1. Introduction
As regards future mobile communication networks, it is

envisioned that in addition to heterogeneous access networks,

ubiquitous computing devices of all sizes, sensors, and embed-

ded devices will be integrated hierarchically through ad hoc and

sensor networks. Moreover, from the users’ point of view,

secure and seamless access to highly available and attractive

services is a fundamental requirement. As plentiful services are

promoted by various providers, adequate user interfaces are

expected to offer access to these services.

It is desirable that various solutions are utilized optimally so

that systems and services provided via future mobile communi-

cation networks can be developed, deployed, and maintained in

a decentralized manner. For example, the distribution of radio

and computational resources in heterogeneous access networks

must be optimized. This means that it is more efficient if new

and existing services share common elements. In addition, it is

important to consider how users can enjoy abundant services

easily. To promote decentralized development, deployment, and

maintenance of systems and services, a mechanism whereby

individual elements can be improved at different paces is desir-

able. Co-existence of different services and systems will

increase, and since most changes are unexpected, it is necessary

to address them when they occur.

To make these mobile communication networks a reality,

the technological issues listed below must be resolved:

• Flexible software evolution must make efficient use of radio

and computational resources in heterogeneous access networks.

• Individual components of services and platforms must be

evolvable at a different pace while certain components are

to be reused. Unexpected changes must be dealt with after

deployment, possibly at runtime.

• Users must be able to use several services simultaneously or

switch between them without any difficulty.

The following chapters present our new approaches to solve

these issues: namely reconfigurability, service adaptation, and

adaptive user interfaces.

2. Reconfigurability
In the case of a reconfigurable mobile terminal, the change

of the terminal configuration (including potential software

updates of new air interfaces) enables the optimum air interface

to be selected under a heterogeneous access network environ-

ment and assures mobility between heterogeneous access net-

works. Moreover, user demands can be met flexibly by adapting

to changes in the state of network load and provided services.

A reconfigurable base station adaptively selects appropriate

air interfaces and relevant resources and optimizes them in

order to make efficient use of heterogeneous access networks.

This is also an effective technique for making simultaneous use

of heterogeneous access when operators install and expand

future mobile communication networks.

In our current research, as an element composing reconfig-

urability, a scheme for more efficient and secure renewal of

software components is being developed.

When software is distributed, it is necessary to consider the

scarcity of radio resources on a mobile communication network.

And when software is updated, the software on multiple termi-

nals sometimes has to be renewed at the same time. Moreover,

along with software-distribution renewal, assuring security

across each layer is a significant challenge.

As regards studies on these challenges, it is being assumed

that mobile networks and ad hoc networks will be integrated

under seamless conditions. The concept of using a local server

for software distribution has been introduced [1], and efficient

software distribution through ad hoc networks has been pro-

posed. As a method for simultaneous software update on multi-

ple terminals—including fallback when updating fails—a time-

out based algorithm has been developed [2]. Furthermore, in our

current research, we have set up a test environment for studying

(2) Sustainable
Evolutionary Systems

DoCoMo Euro-Labs is developing sustainable evolutionary

systems with high user acceptability, aiming at flexible and

efficient evolution of services and platforms. We are research-

ing technologies for reconfigurability, service adaptation, and

adaptive user interfaces to meet these aims.

Katsuya Kawamura, John Hamard, Robert Hirschfeld,

Atsushi Minokuchi and Bertrand Souville

ノート
DoCoMo Euro-Labs is developing sustainable evolutionary systems with high user acceptability, aiming at flexible and efficient evolution of services and platforms. We are researching technologies for reconfigurability, service adaptation, and adaptive user interfaces to meet these aims.

15

NTT DoCoMo Technical Journal Vol. 6 No.1

reconfigurability and verified the implementation and operation

of this algorithm. Regarding security, we developed a mecha-

nism for secure distribution of software based on web services,

and we have implemented it in the test environment.

The time-out based algorithm for simultaneous renewal of

software described above is shown schematically in Figure 1.

This shows how the algorithm solves the issue that occurs dur-

ing reconfiguration time or when nodes with different protocols

cannot mutually communicate. This example covers modifica-

tions to the routing protocols of an ad hoc network. Under the

circumstances in which new software has been distributed to

multiple mobile terminals and the reconfiguration limitation

time (t) has been negotiated, the algorithm shown in the flow

chart in Fig.1 is executed on each mobile terminal. Under such

scenarios, the assurance of software compliance between multi-

ple mobile terminals has been confirmed [2].

In the next phase of our reconfigurability study, we will

expand the mechanism for software distribution and upgrading

developed up till now, and link it to the service adaptation study

described in the following chapter.

With the goal of realizing future mobile networks capable of

reconfigurability in mind, DoCoMo Euro-Labs—and with the

aim of contributing to the definition of the requirements and

overall architecture of those networks—is involved in collabo-

Commit to
new software

Start reconfiguration

successful

t0+T

t

successful

t

successful

t

Start reconfiguration
t=t0

t<t0+T?
no

no
no

yes

yes

yes

Was reconfiguration
successful?

Positive acknowledge-
ment transmission

Fallback-signal
transmission

In case of receiving a signal from another
node, it will be forwarded to a reachable node

No signals received or at least
one fallback signal received from
current reachable node

Change back to
former software

Terminal 1

Terminal 2

Terminal 3

ACK
(Positive acknowledgement)

Figure 1 Algorithm and scenario for time-out-based reconfiguration (example: change of routing protocol)

16

rative research projects as part of our European Framework

Programme.

Since April 2002, we have been participating in the Smart

user-Centric cOmmUnication environmenT (SCOUT) project

on reconfigurability and software radio as part of the Fifth

European Framework Programme. Our main contributions to

this project are as follows.

• User-friendliness of reconfigurable mobile terminals [3]

• Middleware-centric system architecture for mobile terminals [4]

• Network architecture for reconfigurable mobile terminals [5]

• Reconfigurability in ad hoc networks [1][2]

Since January 2004, we have been involved in the End-to-

End Reconfigurability (E2R) project as part of the Sixth

European Framework Programme.

3. Service Adaptation
To meet the severe demands placed by services expected to

be made available via future mobile networks, it is indispens-

able to provide a computing environment supporting multiple

service platforms. There are several challenges to be faced such

as the integration of heterogeneous environments, the shorten-

ing of time to market cycles, integration of service components

from different providers, runtime software evolution, on-

demand personalization, or minimization of system down-time.

Our research on Dynamic Service Adaptation (DSA) [6]

investigates technologies to meet the challenges mentioned

above.

The goal of DSA is to enable the evolution of multiple ser-

vices and applications, best described as Unanticipated

Software Evolution (USE) [7]. With DSA, services and plat-

forms may evolve in such a way that individual elements of

software systems can be selectively modified at a different pace.

With that, fields such as service integration, personalization,

context awareness, and ubiquitous computing can be advanced.

DSA is of importance to future mobile networks on both the

network and the terminal side.

Regarding adaptation technology, various approaches, most-

ly concerned with contents and communication, are being inves-

tigated by the research community. In contrast, our research is

focused on the adaptation of service logic/behavior. Such adap-

tation technology can be applied at development time, compile-

time, load-time, or runtime. Combining Aspect-Oriented

Programming
*1

(AOP) [8], computational reflection [9], and

very late binding [10], our research concentrates on the adapta-

tion of services and platforms without services interruption at

runtime. The three dimensions of adaptability are shown in

Figure 2. For example, the requirement to minimize scheduled

system downtime can benefit from DSA. Most problems materi-

alize after a system’s initial deployment. Up till now, service

platforms were unable to address these problems dynamically at

runtime. DSA provides mechanisms to deploy adaptation mod-

ules into running systems in order to minimize or even avoid

their downtime.

The concept of adaptability is closely related to that of mod-

ularity [11] and variation points [12]. Modularization is a mech-

anism for improving the flexibility and comprehensibility of a

system while allowing the shortening of its development time.

Variation points allow us to explicitly designate module bound-

aries in a system’s design where changes are expected to hap-

pen without the need of explicitly naming these changes.

Variation points are introduced to support flexibility as a result

of the separation and composition of common and variable sys-

tem parts. Variations and variation points depend on the modu-

larity mechanism offered by the programming platform a sys-

tem is built on. Most newly built systems are based on object-

oriented technologies with classes and instances as modularity

constructs as well as units of change. AOP provides a new,

more fine-grained, modularity construct that allows us to repre-

sent crosscutting concerns, down to the methods of individual

...

Ru
nt

im
e

Lo
ad

-ti
m

e
Com

pile
-ti

m
e

Dev
elo

pm
en

t t
im

e

Service logic/behavior

Contents/data

Transmission/communication

...

C
o

m
p

o
si

ti
o

n

Tr
an

sf
o

rm
at

io
n

Figure 2 The three dimensions of adaptability

*1 Aspect-Oriented Programming (AOP): A programming technique for improving the separation of

concerns in software. It enables clearer expression of programs and program compositions by intro-

ducing a new modularity construct called “aspect” that allows to capture crosscutting concerns.

17

NTT DoCoMo Technical Journal Vol. 6 No.1

instances.

Our current DSA research platform is based on

Smalltalk/Squeak [13] and AspectS [14] (AOP for

Smalltalk/Squeak) supporting full computational reflection and

very late binding. Parts of our DSA technology proposal have

been evaluated via prototypical implementations [6] that allow

for debugging, placement and removal of advertisements, the

enforcement of style guides, as well as the integration of addi-

tional service functionality–all that into a deployed and active

running system. A schematic of the adaptation platform utiliz-

ing DSA is shown in Figure 3.

The next steps in our research on DSA will involve the

extension of our platform to cover multiple execution environ-

ments as well as the distribution of adaptation modules men-

tioned in the previous chapter. DSA research covers software

engineering principles and mechanisms for software evolution

in mobile communication systems. Together with our research

partners, we are contributing to and taking advantage of the

momentum of the Aspect-Oriented Software Development

(AOSD) [15] and USE research communities.

4. Adaptive User Interfaces
In the future, mobile networks will provide access to a wide

range of services, such as information access, remote monitor-

ing, and device control from various devices (i.e., mobile termi-

nals or ubiquitous devices); consequently, user interaction with

devices and services will dramatically increase.

In that context, future user interfaces should support such a

service environment and the following issues should be

addressed:

• Various interaction modalities and procedures will be

enabled so as to provide more flexibility for the user. Future

user interfaces should use context information
*2

to enable

adequate simplification and personalization. User’s feeling

and attention should be one of the context information to

consider.

• Supporting user mobility: user profiles should be accessible

from various devices. In a ubiquitous environment, users

should be aware of the availability of the surrounding

devices as well as the functions and services they can sup-

port.

• User interaction with different services is difficult when

they are activated simultaneously. To enable smooth transi-

tions between services, we should minimize explicit interac-

tions and take advantage of possible implicit interactions.

Client-side
adaptation
manager

Server-side
adaptation
manager

SOAP
HTTP
TCP

Component

Adaptation module

Virtual machine

Adaptation utilities

AspectS

Smalltalk/Squeak base

Adaptation utilities

AspectS

Smalltalk/Squeak base

Virtual machine

Component

Adaptation module

Figure 3 Adaptation platform

*2 Context information: Any kind of information that can be used to characterize the state of an entity.

An entity may be a person, place, or object relating to the human-computer interaction.

To address these issues, we are focusing on user-interaction

techniques for controlling simultaneous use of services, and we

are investigating so-called notification technologies (description

of user scenarios, system requirements, and notification algo-

rithms).

The investigated scenarios [16] [17] are described below.

Information about a user in a particular environment (i.e.,

social, physical, or computational resources)—namely, context

information—is gathered from various devices and sensors. The

feeling and attention of the user are important aspects of user

context. The analysis of context information can be done on the

basis of a user-behavior model. Once processed, context infor-

mation could be part of the user’s profile and thus accessible by

any device within the system. In this analysis, it is presumed

how the user’s attention is distributed between different interac-

tions currently engaged in. By foreseeing the attention sharing

between future possible interactions, the user interface as well

as services and applications could be effectively adapted, and

suitable notification means could be used for enabling smooth

transitions of the user’s attention. Services drawing a user’s

attention would be augmented using suitable means whereas

others may be temporarily suspended.

User feelings concerned with periphery (i.e., things that are

noticed without explicitly paying attention to them) are being

investigated for notification purpose [17]. Since people are only

passively sensing their surrounding atmosphere, it is then neces-

sary to restore their attention when explicit interaction is

required. However, peripheral information provides users with

an overall understanding of a situation without requiring exces-

sive attention. User’s peripheral attention is also considered for

realizing a ubiquitous computing environment and an augment-

ed reality environment [18][19]. However, in some cases a

user’s current focus on a task needs to be interrupted (e.g. by an

alarm), so various notification means needs to be considered. To

perform notification, a network function such as tracing objects

of user’s attention is necessary as well. Notification can also

mean pre-negotiation in order to perform transition of attention

sharing, so the user’s confirmation is necessary for the scenario

mentioned above [16].

Since January 2004, we have been participating in the

Secure, Internet-able, Mobile Platforms LeadIng CItizens

Towards simplicitY (SIMPLICITY) project as part of the Sixth

European Framework Programme. We are contributing to the

definition of user scenarios, technical requirements, and the sys-

tem architecture concerning a user interface suitable for future

mobile networks. In that project, we are also investigating a

simply personalized user interface for supporting users with a

various range of mobility—which poses another challenge fac-

ing a user interface.

5. Conclusion
This article presented the results and current state of our

research on sustainable evolutionary systems, namely reconfig-

urability, service adaptation, and adaptive user interfaces.

References
[1] L. Yao and C. Prehofer: “Local Software Update for Terminal

Reconfiguration using Ad Hoc Networks,” SDR ’03 Technical

Conference, Nov. 2003.

[2] C. Prehofer and B. Souville: “Synchronized reconfiguration of a group of

mobile nodes in ad-hoc networks,” ICT ’2003, Vol. 1, pp. 400–405, Feb.

2003.

[3] J. Hamard, G. Conaty, and R. Navarro-Prieto: “A User-Centric Approach

for the Development of Usable Reconfigurable Terminals,” 1st Summit

2003, Vol. 2, pp. 842–846, Jun. 2003.

[4] N. Georganopoulos, T. Farnham, T. Schoeler, R. Burgess, P. Warr,

Z.Golubicic, J. Sessler, F. Platbrood, B. Souville, and S. Buljore: “Terminal-

Centric View of Software Reconfigurable System Architecture and

Enabling Components and Technologies,” IEEE Communications

Magazine, May 2004.

[5] C. Prehofer, L. Yao, K. Kawamura, and B. Souville: “Middleware and

Networking Support for Re-configurable Terminals,” SDR ’02 Technical

Conference, Vol. 2, Nov. 2002.

[6] R. Hirschfeld, K. Kawamura, and H. Berndt: “Dynamic Service

Adaptation for Runtime System Extensions.” In: WONS ’04 Proceedings,

LNCS 2928, pp. 225–238, Springer, 2004.

[7] Unanticipated Software Evolution homepage

(htlp://www.joint.org/use/)

[8] G. Kiczales, J. Lamping, A. Mendhekar, Ch. Maeda, C. V. Lopes, J.-M.

Loingtier, and J. Irwin: “Aspect-Oriented Programming.” In: ECOOP ’97

Proceedings, 1997, pp. 220–242.

[9] P. Maes: “Concepts and Experiments in Computational Reflection.” In:

OOPSLA ’87 Proceedings, pp. 147–155, 1987.

[10] A. Kay: “Is “Software Engineering” an Oxymoron?” Viewpoints Research

Institute, 2002.

[11] D. L. Pamas: “On the Criteria To Be Used in Decomposing Systems into

Modules.” In: Communications of the ACM, Vol. 15, No. 12, pp.

1053–1058, Dec. 1972.

[12] K. Czarnecki: “Generative Programming: Principles and Techniques of

Software Engineering Based on Automated Configuration and

Fragment-Based Component Models.” Dissertation, TU Ilmenau, 1998.

[13] D. Ingalls, T. Kaehler, J. Maloney and S. Wallace, A Kay: “Back to the

Future: The Story of Squeak, a Practical Smalltalk Written in Itself” In:

OOPLSA ’97 Proceedings, pp. 318–326, 1997.

[14] R. Hirschfeld: “AspectS—Aspect-Oriented Programming with Squeak.”

18

19

NTT DoCoMo Technical Journal Vol. 6 No.1

In: M. Aksit, M. Mezini, and R. Unland, editors, Objects, Components,

Architectures, Services, and Applications for a Networked World, LNCS

2591, pp. 216–232, Springer, 2003.

[15l Aspect-Oriented Software Development homepage

(http://www.aosd.net/)

[16] J. S. Shell, T. Selker, and R. Vertegaal: “Interacting with Groups of

Computers.” In: Communications of the ACM, Vol. 46, No. 3, pp.

40–46, Mar. 2003.

[17] D. S. McCrickard and C. M. Chewar: “User Goals and Attention Costs.”

In: Communications of the ACM, Vol. 46, No. 3, pp. 67–72, Mar. 2003.

[18] M. Weiser and J. S. Brown: “The coming age of calm technology.

revised version of Designing calm technology.” Power Grid Journal, Vol.

1.01, Jul 1996.

[19] G. D. Abowd, E. D. Mynatt, and T. Rodden: “The Human Experience.”

In: IEEE Pervasive Computing, Vol. 1, No. 1, pp. 48–57, Jan.–Mar. 2002.

ACK: ACKnowledgement

AOP: Aspect-Oriented Programming

AOSD: Aspect-Oriented Software Development

DSA: Dynamic Service Adaptation

HTTP: HyperText Transfer Protocol

SCOUT: Smart user-Centric cOmmUnication environmenT

SIMPLICITY: Secure, Internet-able, Mobile Platforms LeadIng CItizens

Towards simplicitY

SOAP: Simple Object Access Protocol

TCP: Transmission Control Protocol

USE: Unanticipated Software Evolution

Abbreviations

