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This article discusses new cryptographic algorithms and pro-
tocols designed to enable DoCoMo to be a trust broker in a
large heterogeneous network.

1. Introduction

To support DoCoMo’s Fourth-Generation (4G) vision, any
security solution must be exceptionally scalable and flexible.
Not only will DoCoMo’s client base be huge, but client net-
working environments may be heterogeneous and constantly
changing. There will also be diversity in how clients will use
the system, with some wishing to access private information in
a secure fashion and others wishing to conduct secure transac-
tions with third-party service providers, for example. In the 4G
network, DoCoMo’s challenge—indeed, its opportunity—is to
find a security solution that promotes growth and flexibility
rather than inhibiting them.

In this article, we provide a snapshot of our current
research into cryptographic algorithms that are designed to
allow DoCoMo to provide security services to a large client
base in diverse environments. We begin by describing three
techniques designed to simplify DoCoMo’s management of a
“Public Key Infrastructure” (PKI)—namely, Hierarchical
Identity-Based Cryptography (HIBC), certificateless Public-
Key Cryptography (PKC), and aggregate signatures. Next, we
describe two techniques designed to enable secure content dis-
tribution: an exceptionally efficient microcredit scheme using a
new type of hash tree, and a stream authentication scheme that
allows an intermediate proxy to transcode the stream dynami-

cally without breaking end-to-end security.

2. Simplifying the PKI
PKC allows two parties with no direct trust relationship to
communicate securely, without involving a Trusted Third Party

(TTP) in the communication. Thus, PKC is more flexible than

symmetric cryptography. However, before communication can
begin, public keys must be distributed and authenticated. For
example, before sending a message encrypted with a recipient’s
public key, the sender must obtain the recipient’s public key and
must receive assurance, from an entity that it trusts, that the
public key is authentic—i.e., it really belongs to the recipient
(and not someone else).

Distributing and authenticating public keys typically
requires a PKI. The PKI usually includes a TTP, called a
Certificate Authority (CA) that generates public-key certifi-
cates; each certificate is a digital signature by the CA that
securely binds together several quantities usually including at
least the name of a user U and his public key PK,. Often, the
CA includes a serial number SN, (to simplify its management
of the certificates), as well as the certificate’s issue date I, and
expiration date E,. By issuing the signature Sig.,(U, PK,, SN,
I, E,), the CA attests to its belief that PK,, is (and will be) user
U’s authentic public key from the current date I, to the future
date E,.

Since CAs cannot predict the future, circumstances may
require a certificate to be revoked before its intended expiration
date; e.g., if a user’s secret key is accidentally revealed or com-
promised, the user himself may wish to revoke his certificate.
Alternatively, the user’s company may request revocation if the
user leaves the company or changes position and is no longer
entitled to use the key. If a certificate is revocable, then third
parties should not rely on that certificate unless the CA distrib-
utes certificate status information indicating whether the certifi-
cate is currently valid. This certificate status information must
be fresh—e.g., to within a day—and it must be widely distrib-
uted to all parties relying on the current validity of the user’s
public key. The task of distributing large amounts of fresh certi-
fication information is known as the “certificate revocation
problem.”

The most well-known approach to the certificate revocation
problem is the Certificate Revocation List (CRL). A CRL is
simply a list of certificates that have been revoked before their
expiration dates. The CA issues this list periodically, with the
CA’s signature affixed. Since the CA will likely revoke many of
its certificates—say, 10% if they are issued with an intended
validity period of one year[1]—the CRL will be quite long if the
CA has many clients. Nonetheless, the complete list must be

transmitted to any party that wants to perform a certificate sta-
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tus check. There are refinements to this approach, such as A-
CRLs that list only those certificates that have been revoked
since the CA’s last update; however, the transmission costs and
the associated infrastructure costs are still quite high.

Another proposal is called the Online Certificate Status
Protocol (OCSP). The CA responds to a certificate status query
by generating (online) a signed report of the certificate’s current
status. This reduces transmission costs to a single signature per
query, but it substantially increases computation costs. It also
decreases security: if the CA is centralized, it becomes highly
vulnerable to Denial of Service (DoS) attacks; if it is distributed
and each server has its own private key, then compromising any
server compromises the entire system [1].

In 1984, Shamir [2] described an approach different from
PKI—called Identity-Based Cryptography (IBC)—designed to
eliminate certificates altogether. In IBC, a user’s public key is
derived directly from aspects of his identity ID,—e.g., his IP
address or e-mail address. The user’s private key PrK,, is gener-
ated by a TTP, called a Private Key Generator (PKG). The PKG
has a public key PK,,; and a “master” private key PrK,,.; it
computes PrK, from PrK,,, and ID,. In IBC, public keys do not

need to be distributed; i.e., as long as a sender knows PK,, . and

PKG
ID,, it can encrypt a message to U. Moreover, certificates are
unnecessary since U can only decrypt if he has received a pri-
vate key from the PKG. Although Shamir described an identity-
based signature scheme, identity-based encryption schemes
were developed only recently [3,4]. HIBC and certificateless
PKC, described below, not only eliminate the need for certifi-

cates, but improve upon basic IBC in different ways.

2.1 Hierarchical Identity-Based Cryptography

IBC eliminates the need to distribute user’s public keys, but
if U, uses a different PKG from U,, then U, must obtain the pub-
lic key of U,’s PKG before encrypting a message to U,. It is
therefore preferable to minimize the number of different PKGs.
On the other hand, it is infeasible for a single PKG to handle
private-key generation for a very large number of users, because
of the major scalability problem associated with the processing
for generating the private keys. HIBC solves this dilemma by
allowing a hierarchical topology in which a root PKG may dele-
gate private-key generation to lower-level PKGs, while outside
of the root PKG.

HIBC, like the Boneh-Franklin IBC scheme, uses elliptic curves

users only need to obtain the public key PK

oot

and a mathematical construct called a “pairing” [5]. Here, we
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describe the HIBC approach briefly, with the aid of specific
examples.

In HIBC, each user has an ID-tuple that represents his position
in the hierarchy. For example, if Alice’s e-mail address is
alice@cs.univ.edu, then her ID-tuple may be (edu, univ, cs, alice).
Alice’s parent in the hierarchy is the client with ID-tuple (edu,
univ, cs); this client might be managed by the system administra-
tor in her university’s Computer Science (CS) department.

The root PKG uses its master private key to generate the pri-
vate keys of the PKGs that are on the level immediately below
it in the hierarchy. In this example, the system administrator
obtains a private key for the CS department from the university,
which makes it possible for Alice to then obtain her private key
from the CS department. To accomplish this, Alice gives her
ID-tuple to the CS department, along with proof of identity.
After verifying her identity, the CS department computes
Alice’s private key as a function of its own private key and
Alice’s ID-tuple (and possibly additional widely-available
information, such as the current date). The CS department sends
Alice her private key via a secure channel. Since Alice’s CS
department is “local,” proving her identity and obtaining a
secure channel is easier than in non-hierarchical IBC. The CS
department’s ancestors in the hierarchy do not directly partici-
pate in the generation of Alice’s private key.

Using hierarchical identity-based encryption as an example
(although hierarchical identity-based signatures are also possi-
ble), another person, let’s call him Bob, can encrypt a message

to Alice as long as he knows PK_ and her ID-tuple (and possi-

bly additional information for validity management such as the
date). Bob does not need to obtain any public keys belonging to
Alice, or to her ancestors in the hierarchy below the root,
because they do not have public keys. He also does not need to
obtain Alice’s up-to-date certificate, because he knows that
Alice will not be able to decrypt the message unless she has an
up-to-date private key. Bob combines PK_ and Alice’s ID-
tuple with his message M to generate a ciphertext C. Alice
decrypts C using her private key. The encryption time, decryp-
tion time and ciphertext length are all proportional to the recipi-
ent’s (Alice’s) depth in the hierarchy, but this will typically be a
fairly small number. -

An interesting property of HIBC is that, since private key
generation is hierarchical, all of the recipient’s ancestors in the

hierarchy can also decrypt the message. This “key escrow’

property may be desirable in some settings, but there are many
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others in which it is not. Below, we present a certificateless
PKC that eliminates the key escrow property while retaining the
benefit of IBC and HIBC of not requiring certificates.

2.2 Certificateless Public-Key Cryptography
A Certificateless Public-Key Encryption (CPKE) scheme

[6]" is similar to a traditional (non-identity-based) public-key
encryption scheme in that a recipient generates its own public-
key/private-key pair and furnishes the public key and a proof of
identity to a TTP to be “certified.” (Certificateless signatures
are also possible when aggregate signatures are used as
described below.) However, instead of generating traditional
certificates, the TTP generates a second decryption key for the
recipient like a PKG does in an identity-based encryption
scheme. In essence, a sender “doubly encrypts” its message—
once using the recipient’s personal public key in a traditional
public-key encryption scheme, and once using the TTP’s public
key and the recipient’s identifying information in an identity-
based encryption scheme. The recipient needs both her personal
private key and an up-to-date decryption key from the TTP to
decrypt.

The sender does not need to check the recipient’s certificate
status, since the sender knows that the recipient will not be able
to decrypt unless the recipient’s TTP has given it a current
decryption key—in effect, “certifying” the recipient. The TTP
does not have key escrow; it cannot decrypt because it does not
know the recipient’s personal private key. Moreover, as long as
the recipient’s personal private key is protected, the TTP can
transmit the recipient’s identity-based decryption key in the
clear.

In CPKE, the sender must obtain the recipient’s public key,
but this can be viewed as a one-time cost because the recipient’s
public key should not change very often. Eliminating certificate
status queries also allows the TTP to reduce its infrastructure.
Unlike traditional PKI, where the TTP must respond to certifi-
cate status queries that may come from senders anywhere in the
network and may concern any recipient, a TTP that uses CPKE
merely needs to transmit decryption keys to its clients (the
recipients). Having the TTP only deal with clients is more
attractive from a business model perspective. Also, the decryp-
tion keys could even be “pushed” to clients, and—in *incre-

mental” CPKE, as described in [6]—multicast might be used to

#1 In [6], the concept is called “Centificate-Based Encryption (CBE)", but the term “certificateless”,
subsequently used in 7], may better capture the revolutionary nature of the idea.

dramatically reduce the CA’s transmission costs. This push
model makes the TTP less susceptible to DoS attacks.

Using incremental CPKE, a TTP can handle a huge number
of clients very efficiently, even if the TTP updates client
decryption keys very frequently (e.g., hourly). The TTP only
needs to compute R, (log(N/R ) decryption keys per time
period, where R, is the number of clients whose public keys
have become invalid during the time period, and N is the total
number of clients. Setting N to be 250 million, and assuming a
10% revocation rate per year, R, = (250 million)/(10 X 365 X
24), which is approximately 2850.

Using this value of R, we find that the TTP only needs to
compute about 13 decryption keys per second. A 1 GHz
Pentium III processor can compute about 280 (elliptic-curve-
based) decryption keys per second; so the TTP’s computational
overhead is quite reasonable. Full details, and additional analy-
sis of computational and transmission requirements, are provid-
ed in [6].

In summary, CPKE allows a TTP, such as DoCoMao, to dra-
matically reduce the infrastructure, as well as the computation
and transmission overhead, needed to manage public keys for a

huge number of users.

2.3 Aggregate Signatures

An aggregate signature scheme, first introduced in [8],
allows multiple digital signatures on multiple (possibly distinct)
messages by multiple signers to be compressed down to the bit-
length of a single short signature. For example, in a PKI of
depth ¢, a user may have a certificate chain consisting of ¢ cer-
tificates, where each certificate is the signature of a parent in the
hierarchy certifying the public key of its child. A signature
scheme permitting aggregation thus reduces the bandwidth
overhead involved in PKI, which may be particularly useful in
bandwidth-constrained environments.

Interestingly, certain types of aggregate signatures, such as
those described in [8], may also be used as decryption keys. A
sender (using CPKE) may thus make a recipient’s ability to
decrypt contingent on its possession of its personal private key
and an aggregate signature containing the signatures of speci-
fied signers on specified documents. This concept of condition-
ing a recipient’s ability to decrypt on the “authorization” of one
or more specified entities may have applications beyond simpli-
fying PKI.



3. Cryptography Tailored for Specific
Applications
3.1 Microcredits for Verifiable Foreign Service

Provider Metering

With the explosive growth of mobile communications, users
may frequently access value-added services through Foreign
Service Provider (FSP)s. These providers will interact directly
with users, later providing details to a user’s Home Service
Provider (HSP) regarding the services rendered; the HSP, in
turn, bills the user. One critical concern is that the FSP might
inflate the usage figures it furnishes to the HSP.

We are addressing this issue with a microcredit scheme.
When a user employs a service, small tokens, called microcred-
its, are issued to serve as the basis for later calculation of
charges. This scheme is efficient in that the verification time
required by the HSP is only logarithmic relative the number of
microcredit transactions, and the verification time required by
the FSP is a constant. Furthermore, the cost of communication
between user and FSP for issuing tokens is also a constant.

The basic idea behind the scheme is as follows. Each user
generates a number of “microcredit tokens.” In our scheme, the
tokens are small (40 bytes on average) and relatively inexpen-
sive to generate; for example, about 5000 microcredits can be
generated in 4.2 ms on a 2.1 GHz Pentium IV.” The user signs
the tokens with its private signature key so that these tokens are
uniquely tied to that user. Only one such signature is necessary
per batch of microcredits. In its interactions with the FSP, the
user may provide a microcredit token at each well-defined inter-
val (e.g., with each packet or at every five seconds). The FSP
has to perform one cryptographic hash function computation to
verify each microcredit. If service is terminated after ¢ intervals,
the FSP sends the rth microcredit token, together with O(log 1)
additional values that are needed to validate the token, to the
HSP. The HSP can validate the rth microcredit in O(log ¢) time.
If it is valid, it bills the user for ¢ intervals of the FSP’s service.

To construct m microcredits using a QuasiModo tree (an
improvement upon traditional Merkle trees), the user performs
the following steps. It first generates m+1 20-byte values at ran-
dom. It labels the leaves of a (nearly) balanced binary tree with
these values. For convenience, we number the tree vertices in a
breadth-first manner starting at 0. That is, the root is v[0], the
left child of the root is v[/], and the right child is v[2], etc. At

#*2 Numbers taken from: hutp://www eskimo. /

ks.html.
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each internal vertex v, it assigns the label b(v[i])=H(b(v[2i+1]),
b(v[2i+2])) where H is a cryptographic hash function for which
it is hard to find two distinct inputs that map to the same value.
Finally, the user digitally signs the root value of this tree
b(v[0]). We also assume that the verification key for the signa-
ture is part of a certificate that is signed by the HSP. When the
user wishes to use the service, he first sends the root, signature,
and certificate to FSP. The FSP verifies these values. At each
interval i, the user transmits b[2i-1] and b[2{]. The FSP verifies
that b(v[i-1])=H(b(v[2i-1]), b(v[2i])), and accepts the token if
s0. Observe that FSP received b(v[i-I]) in an earlier interval.
Now, suppose service is terminated after ¢ intervals. The FSP
transmits b(v[2i-1]), together with the values b[j] of the siblings
of all the vertices on the path from v[2i-/] to the root of the tree,
to the HSP. The FSP also provides the user’s original certificate
and signature on tree b(v[0]). With these values, the HSP can
then compute what should be b(v[0]), and can use that to verify
the user’s signature. If it matches, the HSP bills the user for ¢
intervals of service. More details can be found in [9].

The security proof of the scheme shows that any attempt by
the FSP to over-bill the user would result in either forging the
underlying digital signature scheme or finding two inputs to the
hash function that map to the same value. Since there are signa-
ture schemes for which forgery is believed to be infeasible and
since there are cryptographic hash functions for which finding
colliding inputs is believed to be infeasible, it follows that we

can implement this scheme with a high degree of security.

3.2 Swiss-Cheese Authentication

We developed two schemes, LInear multiplex Scheme for
Simulcast Authentication (LISSA) and TREe Scheme for
Simulcast Authentication (TRESSA), for efficient authentica-
tion of media streams that may be modified by a proxy in a con-
tent distribution network. Using our schemes, a proxy can inter-
cept a stream digitally signed by a content provider, and modify
it dynamically while preserving the ability of the ultimate
receiver to verify the content provider’s signature and, hence,
the authenticity and integrity of the data received. These authen-
tication schemes allow a content provider to encode and sign its
entire data stream only once, as opposed to the very expensive
processes of either signing each frame or of encoding and sign-
ing different versions for each anticipated combination of
device, network configuration and channel quality. The proxy,

in turn, may be provided as a network service, and be billed
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appropriately.

Our schemes are applicable to any setting in which a proxy
wishes to remove a portion of data from a stream or other data
set without inhibiting the ability of the ultimate recipient to ver-
ify the digital signature. For example, one common transcoding
technique is multiple file switching, wherein the proxy has sev-
eral versions of the same stream (e.g., low, medium, and high
quality) and chooses which stream to transmit according to the
channel conditions. The proxy may want to periodically switch
between streams. Another common technique is scalable com-
pression, wherein the multimedia object is broken up into a base
layer and several enhancement layers. The base layer alone is
sufficient to view the stream whereas the enhancement layers
improve the quality. If the network suddenly becomes congest-
ed, the proxy may wish to remove enhancement layers to
accommodate other Quality of Service (QoS) guarantees. Our
techniques can also be used for dynamic advertisement place-
ment wherein the source can include a number of advertise-
ments in a stream, and the intermediary can target particular
advertisements according to the preferences of the users it
serves. While we have schemes for all these settings, we focus

here on multiple-file switching, of which the other scenarios

may be viewed as special cases. This scheme is called “Swiss-
cheese authentication” because the operations of the proxy
leaves ‘holes’ in the stream received by the recipient so that it
resembles Swiss cheese.

At a high level, the schemes work as follows. Both divide a
media stream into frames (switchable units of data). Each frame
is first separately cryptographically hashed with a first-layer
cryptographic hash function. The resulting hashes are then
hashed together with a second-layer cryptographic hash func-
tion and digitally signed. In the LISSA scheme, the second-
layer hash involves a standard iterated chaining construction. In
TRESSA, the second-layer hash employs a Merkle tree. These
schemes are shown in Figure 1.

In Fig.1(a), we have LISSA processing three streams. Each
frame is hashed with the first layer hash H, and the resulting
hashes are then chained together. That leads to the final hash
value h , which is digitally signed, with (M) representing the
signature.

In Fig.1(b), we have TRESSA with four streams. Again,
each frame is hashed and the values are assigned to the leaf ver-
tices. The interior vertices take on the value associated with the

hash of their children. Finally, the root x is signed.
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Figure 1 The LISSA scheme and the TRESSA scheme



In LISSA if a frame is dropped, we send the first layer hash
of that frame instead. In TRESSA, we send the same value—but
if any frames are clustered together and form the leaves of an
entire subtree, we send the value of the root of that subtree. In
Fig.1(b), this value corresponds to the shaded vertices.
According to our implementation prototype, the LISSA scheme
is anywhere from 3 to 18 times faster than the basic approach of
signing each frame. We provide additional details, as well as

our comprehensive security analysis [10].

4. Conclusion

In this article we first described three research results related
to simplifying PKI: HIBC, certificateless PKC, and aggregate
signatures. Next, we described two results related to the secure
distribution of content and services. The first was an exception-
ally efficient microcredit scheme that uses a new type of hash
tree and allows HSPs to securely receive accurate billing infor-
mation from FSP partners; the second was a stream authentica-
tion scheme wherein an intermediate proxy dynamically
transcodes a stream without breaking end-to-end security.

This article explained our research efforts in the areas of
cryptography and information security. We believe that
DoCoMo’s all-encompassing 4G-vision presents both numerous
opportunities and numerous challenges. Our goal is to develop
the necessary security technologies and building blocks to not
only help realize DoCoMo’s vision, but also to open up even

greater business opportunities.
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ABBREVIATIONS
CA: Certificate Authority
CBE: Certificate Based Encryption
CPKE: Certificateless Public-Key Encryption
CRL: Certificate Revoeation List
CS: Computer Science
DoS: Denial of Service
FFSP: Foreign Service Provider
HIBC: Hierarchical Identity-Based Cryptography
HSP: Home Service Provider
IBC: ldentity-Based Cryptography
LISSA: LInear multiplex Scheme for Simulcast Authentication
OCSP: Online Certificate Status Protocol
PEC: Public Key Cryptography
PKG: Private Key Generator
PKI: Public Key Infrastructure
QoS: Quality of Service
TRESSA: TREe Scheme for Simuleast Authentication

TTP: Trusted Third Party
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