(1) AOE—A Mobile
Computing Platform

Nayeem Islam, Dong Zhou,

Shahid Shoaib and Masaji Katagiri

This article introduces the AOE proposed by DoCoMo USA
Labs, which is a computing platform that maintains and
enhances the runtime performance and end-user’s experience
by adapting to changing runtime conditions in mobile com-

puting environments.

1. Introduction

Over the last few years, there has been a large deployment
of wireless data services by carriers all over the world. A vast
majority of the deployed systems assume a relatively simple
client that is browser-based and non-programmable. Two domi-
nant examples of systems that have proliferated this model are
i-mode [1] and Wireless Access Protocol (WAP) [2]. These
mobile terminals suffer from a variety of different problems
including poor performance, inability to allow the user to work
in unconnected network, poor User Interface (UI) and do not
enable simple Peer to Peer (P2P) applications, leading to overall
poor user experience.

At DoCoMo USA Labs, we aim to realize a web-based appli-
cation platform that can utilize current web-based services and
applications with better runtime performance by making effective
use of client-side resources. Our proposed Agile Operating
Environment (AOE) provides the following three features:

1) On-device Adaptive Replication of Server-side Program Code

Mobile users may perceive poorer experience because of
longer response latency, lower throughput, wider variation in
responses, and more likelihood of disconnection. AOE allows
the caching of server-side code units on the client device to alle-
viate such problems. Such on-device caching and execution is
adaptable in that it can dynamically make caching decisions at
runtime depending on environment changes, and that once the
code is cached, it can dynamically select either to invoke the

client cached copy or the code residing on the server.

NTT DoCoMo Technical Journal Vol. 5 No.4

2) On-device Dynamic UI Binding

A problem baffling Web applications targeted to mobile
devices today is the heterogeneity in the interaction capabilities
of these devices. Ideally, an application should be written only
once, independent of any specific device. Yet, when the appli-
cation is used on different devices, its presentation should be
automatically adjusted to a form optimal to the device. AOE
allows the binding between the abstract description of the pre-
sentation and its implementation to occur on the client device
whenever there is enough resource on the device to do so. In
addition, such binding is dynamic so that implementation of the
presentation can change in accordance with the change in
resource availability.

3) On-device Support for Adaptive Fault Tolerance”

One of problems with current existing approaches for fault
tolerance is that they are inflexible and do not adapt to changing
system conditions or application requirements. But, mobile
environment are characterized by change and hence, no one
fault tolerance mechanism will work for all instances or all the
time. We believe that dynamically adapting fault tolerance
addresses this issue. Dynamic changes to the fault-tolerant
mechanism can be made by separating the processes performed
during fault-free operation from the processes performed when
a fault has occurred and by encapsulating the processing rou-
tines with interfaces. This also enables part of the processing to

be allocated to the client-side processor.

An important feature of this platform is that these facilities
can be customized for devices of different capabilities, reconfig-
ured by user or application to adjust to runtime resource avail-
ability, and self-adapt to changes in resource availability, to

enhance user experience in mobile environments.

2. AOE Architecture

AOQE supports web-based applications where users request
services through a browser from their user client device. It
specifically targets applications that involve dynamic, personal-
ized content.

A typical AOE application consists of a cluster of Mervlets

[3] that can dynamically generate Web pages. A Mervlet is sim-

*1 Fault tolerance: The ability to continue functioning and complete a process without conflicts by
performing a recovery process when an error has occurred. Different measures are taken for different
types of fault. Fault tolerance is often used between servers that perform critical processes (e.g., sys-
tems that perform commercial transactions).


ノート
This article introduces the AOE proposed by DoCoMo USA Labs, which is a computing platform that maintains and enhances the runtime performance and end-user's experience by adapting to changing runtime conditions in mobile computing environments.


J New’]—;chnology Reports J

ilar to a Servlet [4] except that it can be replicated and executed
on client devices as described above, its Ul can be dynamically
attached, and it can recover from faults in the client terminal,
network or server.

The AOE runtime is an environment for the execution of
Mervlet applications. In this platform, the client and server each
run an instance of the runtime environment (Figure 1).
HyperText Transfer Protocol (HTTP) requests issued from the
terminal’s browser are intercepted by the AOE runtime environ-
ment (client AOE) on the terminal. The client AOE then either:

» passes the request to the server-side AOE runtime environ-
ment (Server AOE) using any form of transport (When the
server and client support this transport, it is possible to use
the Reconfigurable Messaging System (RMS) proposed by

DoCoMo USA Labs [3]), or

« serves the request locally when the requested page is locally
available or when the client AOE decides to execute the

requested Mervlet locally.

The response, which is usually the presentation of the appli-

AOE runtime environment AOE runtime environment

RMS message

Client side Server side

Figure 1 Symmetric AOE model

cation described in languages such as HyperText Markup
Language (HTML), is then optionally re-bound with the user
interface library deployed on the client device, and finally
returned to the browser in HTTP format.

The replication manager is responsible for facilities that
decide where to serve the requests, and the Ul composer is
responsible for facilities that dynamically re-bind the Uls of
applications (Figure 2). When required, the client AOE and
server AOE cooperatively assure that once client AOE receives
an HTTP request from the browser, it will serve according to a
reliability guarantee such as processing the request once and
only once. Such reliability assurances are provided by the
Adaptive Reliability Manager (ARM). A key feature of our sys-
tem is that the basic system facilities are adaptable. The three
key facilities—UI Composer, Replication Manager (RM), and
RMS—are adaptively controlled by three adaptation managers
(UI Adapter, Replication Adapter and ARM, respectively) that
make adaptive decisions based on input from the Preference
Manager and the Capability Profiler. An adaptation coordinator
coordinates the individual adaptation managers of each facility.
Detailed descriptions of each component can be found in

Reference [3].

3. On-Device Adaptive Replication

Existing technologies, including web caching and prefetch-
ing” techniques, can be applied to mobile web applications and

to some dynamic applications that produce static web pages.

#*2 Prefetching: A technigue whereby data (web content) likely to be needed by a user is automati-
cally read in before it is req d. This often i
clues derived from the structure of web content or the user's previous activity.

ding which web pages to read in based on

Ul composer
ptation coordi
Ads ‘o i Presentation
scheme
Preference < > e A
manager Replication manager
Replication < > Replication
adapter scheme
Capability profiler |[¢—» RMS
ARM h\
Fault tolerance
strategy
- = %__)
~

Adaptive operation =

enables

Dynamic reconfiguration

Figure 2 Layered components of the AOE runtime environment



However, these technologies are not necessarily effective for
dynamic personalized web content generated by server-side
code units (such as servlets) that are widely used in mobile Web
applications. AOE handles this sort of dynamic personalized
web content by replicating server-side code units on the client
terminal.

Mervlets are replicable active objects. A Mervlet is com-
posed of classes that define the Mervlet, read-only data used by
the Mervlet, and mutable data/application state of the Mervlet.
The mutable states of an application shared by a number of
users can typically be divided into two disjoint sets: those that
are private to a user or session, and those that are shared by all
the users or sessions. In our system, applications are maintained
at the required level of consistency by subjecting this data to the
bare minimum of synchronization.

The selection and populating of a replica is customizable
and adaptable in that devices, servers and applications can
define their own triggers for selecting a device as a replication
site and populate the site, and the dynamic capabilities provided
by the AOE runtime are used to automatically evaluate the
predicates for the trigger. Adaptation in replica invocation is
supported by per-request replica selection for invocation. That
is, for each request received by the client, the client- and server-
side AOE runtime will collaboratively decide which replica to

use for this particular request.

4. On-Device Dynamic Ul Binding

One of the challenges in developing application for a ubig-
uitous environment is the user interface adaptation for different
types of devices. Traditionally the problem is solved using a
server proxy that adapts content on its way to a device. The pre-
sentation parts of these applications can be written in using
eXtensible Markup Language (XML) [5] and eXtensible
Stylesheet Language Transformations (XSLT) stylesheets [6].
As different types of devices, these types of solutions are cum-
bersome to update and maintain. Also, these solutions do not
utilize the available resources in the new smart devices where
the application may be fully device resident.

In AOE, we require applications to write their presentation
in tags [7] to translate XML for rendering. However, the tags
are not statically bound to the application but are constructed as
dynamically attachable libraries that may be chained together at
runtime in a specific order.

To enable dynamic presentation binding we choose a model

NTT DoCoMo Technical Journal Vol. 5 No.4

similar to Java Server Pages (JSP) [4], which is called Mervlet
Server Pages (MSP). In this model—unlike JSP libraries where
Uls are embedded in the applications at development time—a
UI proxy is added to the program. At runtime the UI Adapter
attaches the appropriate library to enable the presentation of the

application.

5. On-Device Support for
Adaptive Fault Tolerance

Support for adaptive fault-tolerance is realized by the RMS
and recoverable Mervlets.

The RMS provides configurable message delivery function-
ality in the Mervlet environment. This functionality is encapsu-
lated under an interface called the Reconfigurable Messaging
System-Failure Free Strategy Interface (RMS-FFI). An applica-
tion only calls methods via this interface. The methods that are
actually executed are set by the ARM based on criteria given by
the user or application. For example, the RMS can be set up to
use a point-to-point messaging service or to use a centralized
messaging server (such as Java Message Service (JMS)).

At the application level, recoverable Mervlets are used to
provide fault tolerance. Recoverable Mervlets allow the same
application to use different fault tolerance mechanisms accord-
ing to circumstances. For example, a web mail application may
be configured to be more reliable for corporate email than per-
sonal email.

Dynamic reconfigurability support in fault-tolerance is
achieved by allowing the two main components, the RMS and
the Recoverable Mervlet, to have different failure free and
recovery strategies, which can be set dynamically by the adap-
tive reliability manager as shown in Figure 3. The separation
between failure free and recovery strategies makes it easier to
develop multiple fault recovery strategies corresponding to a
failure free strategy. For example, in case of RMS, one recovery
strategy may prioritize the order in which messages are recov-
ered while another fault recovery strategy may not.

Using the adaptability of this fault-tolerance support, we
implemented a facility that allows the server-side logging to be
turned on or off according to the server load. When the server is
heavily loaded, the ARM can reconfigure the RMS to suspend
server-side logging. Under certain circumstances this can signif-

icantly improve the response time.



J NewTechnology chorts J

Adaptive reliability manager

Mervlet application

Adaptation policy
Failure

model Strategy

decision

Reliability

Strategy
replacement
manager

Switch/Add |, Adapter
FRI 4__“ Failure free
s Strﬂtegy

guarantee Strategy

selector

Application

Events to

monitor |

Event
Event fired

monitor

Monitor

RI | Adapter
Plat Failure recovery B}
- strategy

Strategies

|’ Fault tolerance strategies

Fault tolerance metadata

‘I Preference manager

Capabilities

— Capability profiler

Figure 3 Reliability support in AOE

6. Implementation and Evaluation

We have implemented a prototype AOE runtime environment
and a number of sample applications. Here, we introduce a num-

ber of results of evaluation tests performed using this prototype.

6.1 Benefits of Adaptive Replication

Figure 4 shows user perceived response time for the
WebChess application under the following three scenarios:
1) Server load: Low; Adaptive replication: Prohibited
2) Server load: High; Adaptive replication: Prohibited
3) Server load: High; Adaptive replication: Enabled

In this test example, replication was performed at step #4
due to the long response time at step #3. (Here, each step corre-
sponds to a pre-defined step in a chess application.) This graph
shows that the combined cost of replica populating and local
execution is even slightly (about 6.6%) lower than when the
steps continue to be executed on a heavily-loaded server. (The
transfer file size needed for replication in WebChess is about 37
kB.) After replication, the response time decreased significant-
ly, and was only slightly longer than when the server was run
with no load despite that the laptop is computationally less

capable than the server desktop.

6
"
-
g4
=
@3
&
a 2
&
1
. * + ;
0
1 2 3 4 5 6 7 8
Step No.

—a— (1) No replication, low server load
—=— (2) No replication, high server load
—&— (3) Adaptive replication with high server load

Figure 4 Changes in the response times of WebChess
(replication at step #4)

6.2 Evaluating the Overall Effects of Adaptation

Figure 5 shows an example of how the response time is
improved by the combined adaptive behavior of the system for
the Web Calendar application.

In this test, we studied the adaptive behavior of the system
by loading the server with incoming client requests from three
computers which were simulating 100 clients per machine. As a
result of the increased server I/O caused by server-side logging,
the server load increased and the response time went up (> 20

seconds). At this time (step #3) the system stopped logging



30
- 25
A

Server logging
switched off

Replicated to
terminal

Response time (

L 4
-

-
w
]
~
7]
e
=
w

Step No.

Figure 5 Effectiveness of combined adaptations

messages on the server side by adaptively modifying the mes-
sage logging process. As a result, the response time fell to
around five seconds (after step #5). The system then judged that
the reduction of response time was still insufficient, and migrat-
ed the Web Calendar application itself to the client terminal
(step #10). As a result, the response time was once again sub-
stantially reduced (< 10 ms). These results confirm the effects
on the runtime performance of introducing adaptive replication

and adaptive fault tolerance.

7. Related Works

Several systems have been developed with similar goals to
our own, including Rover [8] and Odyssey [9]. However, an
important aspect of our system that distinguishes it from these
other systems is that we have focused our attention on perfor-
mance and adaptation.

Server-managed replication is mainly used to enhance the
availability and reliability of services and for server-side load
balancing (load distribution) [10]-[12]. The study we have
described here is different in that the client terminals have some
degree of control over each stage of replication. Although
Rover and Coda use client-controlled replication to support
offline operations [8][13], they do not address the dynamic cre-
ation of replicas or adaptability in service invocation or data
access.

With regard to fault tolerance, our approach differs from
that of existing work such as Rover [14] which provides tools
for producing reliable mobile applications, and instead we adopt
a new approach in which the application response time is signif-
icantly improved by adaptively switching logging from the
server to the client. Furthermore, we have proposed a unique
framework that allows multiple failure recovery strategies to be

provided for a specific failure free strategy. This feature is not

NTT DoCoMo Technical Journal Vol. 5 No.4

supported by existing adaptive fault tolerance systems such as
[15] through [18].

8. Conclusion

Mobile environments change continuously, and this affects
the runtime performance and the end user’s experience. In this
article, we have presented a system called AOE that adapts
itself to the prevailing conditions in order to mitigate the degra-
dation of runtime performance and user experience. In particu-
lar, we have discussed three key facilities—service replication,
reconfigurable messaging, and dynamic Ul binding—that are
essential for realizing a comfortable user experience. An impor-
tant feature of our system is that these three facilities are able to
adapt at runtime to the system conditions and the characteristics
of the client terminal. We have also demonstrated how multiple
runtime adaptations in different parts of the system can work
together to improve system performance. Although we have not
addressed security issues in this article, we are currently treating

the security aspects of our system as a matter of top priority.

REFERENCES

[1] Encki et al: “Special Issue on i-mode Service,” NTT DoCoMo Technical
Journal, Vol. 1, No. 1, pp. 4-30, Oct. 1999,

[2] M. Van der Heijden and M. Taylor: “Understanding WAP: Wireless
Applications, Devices and Services,” Artech House, 2002.

(3] N. Islam, D. Zhou, S. Shoaib, A. Ismael and S. Kizhakkiniyil: “AQE: A
Mobile Operating Environment for Web-based Applications,” To appear
in Proc. Of IEEE Symposium on Applications and the Internet (SAINT)
2004.

[4] M. Hall: “Core Servlets and JavaServer Pages (JSP),” Prentice Hall PTR, 1st
edition, 2000.

[5] E.R. Harold and W.S. Means: “XML in a Nutshell, 2nd Edition,” O'Reilly
& Associates.

[6] M. Kay: “XSLT: Programmer’s Reference, 2nd edition,” Wrox, 2001.

[7] B. Shannon, et al: “Java 2 Platform, Enterprise Edition: Platform and
Component Specifications,” Addison-Wesley, 2000.

[8] A.D. Joseph, A. F. delespinasse, J. A. Tauber, D. K. Gifford and M. F.
Kaashoek: “Rover: a toolkit for mobile information access,” In Proc. Of
ACM SOSP-15, 1995.

[9] B. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn and K.
R. Walker: “Agile application aware adaptation for mobility,” In Proc. Of
ACM SOSP-16, 1997.

[10]C. Pu and A. Leff: “Replica Control in Distributed Systems: An
Asynchronous Approach,” In Proc. of 1991 SIGMOD, May 1991.

[11]B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U.
Maheshwari, A. Myers and L. Shrira: “Safe and Efficient Sharing of
Persistent Objects in Thor,” In Proc. of 1996 SIGMOD, Jun 1996.

[12] P. Felber, R. Guerraoui and A. Schiper: “Replicating Objects Using the
CORBA Event Service?,” In Proc. of FTDCS '97, 1997.



10

J Ncheclmology chorls J

[13]1J. Kistler and M. Satyanarayanan: “Disconnected Operation in the
Coda File System,” ACM Transactions on Computer Systems, 10 (1), 3-
25, Feb. 1992.

[14] A. D. Joseph and M. F. Kaashoek: “Building Reliable Mobile-aware
Applications Using the Rover Toolkit,” In Proc. of MOBICOM 96, Nov.
1996.

[15]1. Chang, M. A. Hiltunen, and R. D. Schlichting: “Affordable Fault
Tolerance through Adaptation,” Parallel and Distributed Processing,
LNCS 1338, pp. 585-603. Apr. 1998,

[16] C. Sabnis, M. Cukier, J. Ren, P. Rubel, W. H. Sanders, D. E. Bakken, and
D. Karr: “Proteus: A Flexible Infrastructure to Implement Adaptive Fault
Tolerance in AQuA,” In Proc. of 7th IFIP Working Conf‘erence on
Dependable Computing for Critical Applications, pp.137-156, 1999.

[17]N. Venkatasubramanian, M. Deshpande, S. Mohapatra, S. Gutierrez-
Nolasco, and J. Wickramasuriya: “Design and Implementation of a
Composable Reflective Middleware Framework,” In Proc. of ICDCS
2001.

[18]Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant: “Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance,” IEEE Transactions
on Parallel and Distributed Systemns, 10 (6), pp. 560-579, Jun. 1999,

ABBREVIATIONS

AOE: Agile Operating Environment

HTML: HyperText Markup Language

HTTP: HyperText Transfer Protocol

JMS: Java Message Service

JSP: Java Server Pages

MSP: Mervlet Server Pages

P2P: Peer to Peer

RMS: Reconfigurable Messaging System

RMS-FFI: Reconfigurable Messaging System-Failure Free strategy Interface
UL User Interface

WAP: Wireless Application Protocol

XML eXtensible Markup Language

XSLT: eXtensible Stylesheet Language Transformations




