NTT DoCoMo Technical Journal Vol. 3 No.1

Special Article on Advanced

i-mode Mobile Phones

Implementing Java in
Mobile Phones

Eriko Ooseki and Kazuhiro Yamada

The 503i series is a lineup of Java-enabled mobile phones
geared to games and agent services. Java has attracted a
great deal of attention due to its “Write Once, Run
Anywhere” feature.

This article reviews the Java functions of the 503i series.

1. Introduction

Functions of the conventional i-mode mobile phones includ-
ed speech telephony, content browsing, e-mail exchange and
melody downloading. The latest series can download and exe-
cute programs in addition to these functions, owing to the Java"
runtime environment [1], [2]. This article describes the Java
runtime environment installed in the i-mode mobile phones, and

explains what has been made possible in the environment.

2. Java Runtime Environment

Generally speaking, the term Java has two meanings: the
programming language itself and its runtime environment. The
latter is installed in the 503i series, so that the mobile phones
can run Java programs.

Ordinary (non-Java) programs are translated into machine
language dependant on the type of the operating system (OS),
which is a process called compilation. As they can only run on a
specific type of OS, a separate program is required to make
them run on another OS. A solution to this is the Virtual
Machine (VM) model, in which Java programs are converted
into byte codes that can be processed by the VM on any OS in
the course of compilation. As long as the VM is installed, Java
programs can be run on any OS. Figure 1 illustrates how it
works.

Recently, much attention has been paid to Java 2 Platform

% Java: An object-ori prog

I ge suited for use on networks, developed and advo-
cated by Sun Microsystems in the ULS,

15

ノート
The 503i series is a lineup of Java-enabled mobile phones geared to games and agent services. Java has attracted a great deal of attention due to its“Write Once, Run Anywhere”feature. This article reviews the Java functions of the 503i series.

5

JhLJE&mhyFLwMJ

Micro Edition (J2ME), which
is a version of Java designed
for small electronic devices.
VM is

installed in a wide range of

R

expected to be S

] Java VM
electronic products, from
mobile electronic devices like
Personal Digital Assistants
_ OS A
(PDA) and mobile phones, to
consumer electronics and Device A

0S: Operating System
VM: Virtual Machine

automobiles. J2ME/CLDC
(Connected Limited Device
Configuration) is installed in
the 503i mobile phones.

In the 503i series, Java programs run as applications rather
than applets that are run from the browser. Java programs run
by themselves in 503i. The browser is used only when the Java
application is being downloaded. Once downloaded, the Java
program can be run without activating the browser, meaning
that Java programs are just as user-friendly as the existing i-
melody and i-anime, as far as downloading and storing are con-

cerned.

3. CLDC

CLDC is a configuration based on the K Virtual Machine
(KVM), which is designed for small, network-connected
devices with limited memory capacity and inferior Central
Processing Unit (CPU) performance. Basically, CLDC is a sub-
set of Java 2 Standard Edition (J2SE), which is an upper Java
runtime environment, aimed at facilitating upward compatibility
and portability. CLDC does not support floating-point opera-
tions or reflections due to the VM'’s limited memory size.

For further information on CLDC, visit the website of Sun

Microsystems in the U.S. [1].

4. i-mode Extended API

J2ME consists of the configuration of devices with similar
basic performance requirements by category, and the profile
defined for each specific field and industry type. The i-mode
extended Application Programming Interface (API) belongs to
the latter. Profiles standardized by the Java Community Process
(JCP), in which DoCoMo is involved, include the Mobile
Information Device Profile for the J2ME Platform (MIDP).

wide range of devices are under the scope of MIDP, including

Java VM absorbs the difference from OS to OS,
so that both devices A and B can run the same Java program.

Java Program

Java VM

OSB

Device B

Figure 1 How Java Works

interactive pagers, PDAs and mobile phones. The i-mode
extended API is not compatible with MIDP, as the former has
been optimized especially for i-mode services.

Figure 2 illustrates the architecture of the Java runtime
environment in the 503i series. As shown in the Figure, models
with a KVM/CLDC class library and an i-mode extended
library are able to run the same programs. The i-mode extended
library is specified to guarantee minimum compatibility. Certain
types of applications that need to be programmed in considera-
tion of the screen size and keypad characteristics, such as
games, might require some fine-tuning, depending on the
mobile phone. On the other hand, transaction-type programs
(e.g., stock quotes, weather information) can be run without any
modification. Each component is described below. As this arti-
cle merely explains API in brief, refer to the “i-mode Java spec”

disclosed at DoCoMo’s website for further information [2].

4.1 Scratch Pad

A scratch pad is a space for storing data that is accessible
from applications. For example, it is used for keeping the score
of games and storing various parameters. In the 503i series, a
scratch pad of 5-10 kbyte is available for use, provided that the
size of the pad has been declared in the Application Descriptor
File (ADF) before use, which is described later. For security
purposes, the scratch pad cannot be shared by multiple applica-

tions.

4.2 User Interface

The user interface for running Java applications can be
broadly divided into two types. One is the high-level API,

which is based on components, and the other is the low-level

API, which is suitable for

NTT DoCoMo Technical Journal Vol. 3 No.1

developing games and other

lications.
apphications i-mode Java Extended Library
@ Scratch Pad
high-level API is designed in @ Networking
@ User Interface

Each component in the

a fashion that makes it just as

user-friendly as conventional

CLDC JAR Storage
Class Library
Data Storage
r (ScratchPad)
KVM
JAM

browsers. Table 1 shows the

key components with refer-

ence to the browser display. [

Native Application Interface

[os]

Application developers

who use the components JAM: Java Application Manager
JAR: Java Archive
shown in Table 1 will KVM: K Virtual Machine

. — 0S: Operating System
acknowledge their inflexibil-

CLDC: Connected Limited Device Cofiguration

Figure 2 i-mode Java Architecture

ity, but will be able to devel-

op highly functional applica- Table 1 Components and HTML
tions with a small number of Component (Java) HTML Tag (Browser) Remarks
codes. Text label <PLAINTEXT>
. Image label
With the use of the low- w“ <
Button <INPUT type= "submit” >, etc.
level API, application devfel- e <INPUT type= “text” > Singl.e-line. text
opers can take the mobile <TEXTAREA> Multiple-line text
phone’s screen size and key- Option <SELECT> L Pop-up type
o . <SELECT SIZE="1" >
pad characteristics into = o
_ Vst Single Selection <SELECT SIZE= “number of lines” > Box type
account when programming, Multiple Selection <SELECT SIZE= “number of lines” MULTIPLE> | More than 1 line
which is useful for develop- Check Box <INPUT type= "checkbox” > W
. " . 1 0xX ype
ing applications like games. Radio Button <INPUT type= radio” >
Ticker <MARQUEE>

The low-level API allows

R . HTML: Hyper Text Markup Language
much flexibility to applica- " e

tion developers, but at the same time, it requires developers to
manage all behavioral aspects of the application.

Other than API, the 503i series has a new element called the
Java pictogram. (The “ e "mark in Photo 1.) The pictogram

appears on the screen when a Java application is running.

4.3 Network Usage

The Java runtime environment in the 503i series includes an
API for Java applications to communicate with the server,
which makes communication by Hyper Text Transfer Protocol
(HTTP) and Hyper Text Transfer Protocol Security (HTTPS)
possible. The mobile phones can thus acquire picture files and
melody files via networks and playback them back while run-
ning a Java application. Moreover, the processing can be dis-
tributed between the mobile phones and the server by using the

server's CGI, considering the 10 kbyte size constraint of Java

Photo 1 Java Pictogram

Archive (JAR) files (applications that are downloadable to
mobile phones) and the limited processing power of mobile
phones. It should be noted that the use of networks must be

declared in the ADF, which is described later.

5. Java Application Manager (JAM)

The 503i series is equipped with the Java Application

Manager (JAM), which manages downloaded Java applications

17

J NewTechnology Report J

and the VM. The key functions of

JAM are as follows.

5.1 Downloading and Storing
Java Applications

If there is an <OBJECT> tag in the
HTML content, Java applications and
JAR files are downloadable. Figure 3 ND
illustrates the download sequence of
Java applications.

JAM acquires the ADF to deter-

mine whether the application is down-

Download Impossible

loadable to the mobile phone. Table 2

shows the information in ADF.

5.2 Management of Java
Applications

As explained above, JAM deter-
mines whether the Java application is
downloadable by referring to the infor- JAR: Java Archive
mation in the ADF. For example, if the
JAR file turns out to be too large for
the mobile phone to handle, the JAR file will not be down-
loaded. In addition to download, JAM manages many other
tasks based on the set value of ADF. The details are described
below.

(1) Auto Launching Setting

Java applications can automatically be launched at fixed
intervals specified by the “LaunchAt”key in the ADF. The user
is given the option to activate/deactivate this function, in case
the user does not want the Java applications to be automatically
launched in some instances. The auto launching function is use-
ful for applications that update information at certain intervals,
such as stock quotes and weather information.

(2) Network Connection Setting

If the “UseNetwork " key in the ADF is specified, the Java
application can communicate with the server from which that
application was downloaded. The user is given the option to
enable/disable the network connection, as the application might
autonomously establish communication (i.e., communicate
without any user operation), unlike conventional browsers.

(3) Version Upgrading
If the user selects the version upgrading function of the

application, JAM will reacquire the application’s ADF, compare

Mobile Phone

F Download OK?

Dmtoadtnmplmd

IP Server

ADF Acquisition Request

ADF

YES

JAR File Acquisition Request

JAR File

ADF: Application Descriptor File
IP: Information Provider

Figure 3 Download Sequence

Table 2 ADF Information

Key Value Remarks
AppName Name of application
AppVer Additional information
PackageURL | Location of JAR file
AppSize Size of JAR file
KvmVer KVM version that can run application
SPsize Size of scratch pad used
AppClass Main class at the time of running application
AppParam Parameter at the time of running application
LastModified | Date of last updating of application
UseNetwork [Declaration to use network function
TargetDevice || Indicates that application is designed for specific models
LaunchAt Declaration of auto launching

ADF: Application Descriptor File
APP: Application
KVM: K Virtual Machine

SP: Scratch Pad

the LastModified in the saved ADF (Table 2) with the
LastModified of the newly acquired ADF, and download a
JAR file if there are any upgrades available. The content of the

existing scratch pad can be used in the upgraded application.

5.3 Security Check

When a Java application attempts to communicate with a

server, JAM checks whether the server is able to communicate.

In the Java runtime environment of the 503i series, the server
must satisfy the following conditions to communicate for secu-
rity purposes.

(1} The host, the port and the scheme (protocol) must be the
same as the site from which the application was down-
loaded.

(2) Redirection is not performed as a result of the communica-

tion process.

6. Security in Java Runtime Environment

Along with the installation of the Java runtime environment
in the mobile phones, much consideration has been given about

security issues.

6.1 Security at the VM Level

J2ME/CLDC verifies the byte codes in advance, in the
course of developing the application. In the prior verification
stage, the stack map (which is normally generated in the memo-
ry when the application is executed) is recorded in the class file,
along with other information. The class format leaves the Java
Development Kit (JDK) and other standard Java formats as they
are, apart from adding the information to the attribute section.
J2ZME/CLDC also verifies the byte codes prior to the execution
of the application: it verifies the adequacy of stack processing,
by referring to the information in the class file verified prior to
compilation. The verification ensures that CLDC is on par with

the system security function provided by JDK.

GLOSSARY

ADF: Application Descriptor File

APL Application Programming Interface

APP: Application

CLDC: Connected Limited Device Cofigu-ration
CPU: Central Processing Unit

HTML: Hyper Text Markup Language

HTTP: Hyper Text Transfer Protocol

HTTPS: Hyper Text Transfer Protocol Se-curity
IP: Information Provider

sJava 2 Platform Micro Edition

ava 2 Standard Edition
JAM: Java Application Manager
JAR: Java Archive
JOP: Java Community Process
JDK: Java Developrment Kil
KVM: K Virtual Machine
MIDP: Mobile Information Device Profile for the J2ME Platform
(5: Operating System
PDA: Personal Digital Assistant
| 5P Seratch Pad
VM: Virtual Machine

NTT DoCoMo Technical Journal Vol. 3 No.1

6.2 Security at the Application Level

CLDC does not include any specification of functions that
may deliberately be exploited by malicious applications, such as
those designed to destroy systems. The lack of APl makes the
development of malicious and dangerous applications impossi-
ble. By the same token, i-mode extended API does not consist
of any API that may be exploited by dangerous applications.

As JAM controls access Lo system resources, it is impossible
to access the memory dial and mailing functions in the mobile
phone. JAM is a component independent of KVM, and it cannot
be controlled by Java applications. Furthermore, no more than
one Java application can be run at once, which prevents applica-
tions from interfering with each other, and disables applications
from sharing data. In other words, the data used by a particular
application cannot be used by any other application. As native
component JAM manages the KVM and the applications, the
security of the mobile phone can be maintained even in the face

of a malicious Java application.

7. Conclusion

The introduction of Java into mobile phones marks the first
step towards exploring a new service frontier. In a nutshell, it is
an unprecedented challenge, to make mobile phones run pro-
grams that have been downloaded from outside. We intend to
further enhance multimedia features in mobile phones in the

future.

REFERENCES

[1] Website of Sun Microsystems (http:/java.sun.comv)

[2] “i-mode Java spec” in DoCoMo's website
(http/waww.nttdocomo.co.jp/ifjava.html)

19

