
Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 48 ―

Migrating an Agile Application
Development System to an Efficient
Remote Work Environment - A Case Study

Communication Device Development Department Takashi Fukuzono Eiko Onuki
 Kiki Wakayama

Usually in agile development, members gather at the same location to work.
However, to avoid the spread of the novel coronavirus, development systems
that incorporate remote work are necessary. Therefore, to maintain efficiency in
development, NTT DOCOMO began combining related tools such as those for
Web task management and automation, and Web conferencing tools for remote
work. This has made it possible to maintain product quality and release products
with the same short cycles as before the coronavirus pandemic.

1. Introduction
The docomo TV terminal is a TV device sold by

NTT DOCOMO. By connecting it to a TV, the user
can watch various video services such as Hikari
TV for docomo.

The docomo TV terminal app is a smartphone
app for operating the docomo TV terminal, and has
numerous functions such as remote-control opera-
tion of docomo TV terminal and viewing recorded

content in other locations. Also, to support the con-
stant upgrades to video services made in response
to changes in the market environment, it is effec-
tive to develop the docomo TV terminal app using
agile development, which prioritizes and develops
required functions in short cycles.

Agile development requires an environment
that enables close communications because of its
short development cycle and often takes place in
the same location. For the docomo TV terminal

App Development Remote Work Agile

©2021 NTT DOCOMO, INC.
Copies of articles may be reproduced only for personal, noncommercial
use, provided that the name NTT DOCOMO Technical Journal, the
name(s) of the author(s), the title and date of the article appear in
the copies.

All company names or names of products, software, and services
appearing in this journal are trademarks or registered trademarks of
their respective owners.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 49 ―

app, our development team gathered at one loca-
tion and carried out development in an environ-
ment that enabled such close communications.

However, due to an increase in the number of
people infected with the new strain of coronavirus
in the Tokyo metropolitan area, and in light of the
risk of infection with the new strain of coronavirus
within the agile development team, it was decided
that, in principle, all development members would
work remotely from February 2020, after devel-
opment tools and communication methods were im-
proved.

This article describes the case study of agile
development of the docomo TV terminal app and
the innovations involved in remote development.

2. Agile Development Overview
2.1 Framework for Agile Development

Agile development is a general term for soft-
ware development methods that repeat develop-
ment in short periods of time. It began when no-
table persons in agile development declared val-
ues and principles of behavior common to agile
software development as the Manifesto for Agile
Software Development [1].

Because agile development proceeds through
repeated development in short periods of time, it
is more robust to change than waterfall develop-
ment*1 and can respond quickly and flexibly to
changes in market user needs.

There are various frameworks for agile devel-
opment, such as Scrum, Extreme Programming*2
and Kanban*3, etc. For our development, we adopt-
ed Scrum, a framework that is lightweight and
easy to understand (but difficult to learn).

The theory and definitions of Scrum are de-
scribed in the “Scrum Guide” [2]. Its content is re-
vised as needed. Scrum defines three roles, five
ceremonies, and three artifacts based on the three
principles of “inspection” to make sure the team is
progressing correctly, “adaptation” to improve the
process as a result of the inspection, and “trans-
parency” to make sure all the current status and
problems are visible.

2.2 Overview of the Scrum Process
1) The Three Roles in Scrum (Figure 1)

(1) Product Owner (PO): Responsible for max-
imizing the value of the product produced by
the Scrum team. Responsible for the prod-
uct, creates and prioritizes the product back-
log, which describes the requirements for
all product functions.

(2) Scrum Master (SM): Responsible for pro-
moting the understanding and practice of
Scrum and ensuring that the process runs
well. Ensures that the Scrum team is effec-
tive by leading them to become self-managed
and cross-functional by removing obstacles
to their progress and helping them to im-
prove.

(3) Development member: Development mem-
bers realize the product. There is no hier-
archy. The ability to create products is ful-
filled when everyone aligns. The team makes
every effort to complete the product back-
log items agreed upon with the PO, and is
responsible for constant improvement.

2) The Five Ceremonies in Scrum
(1) Daily Scrum: A place where the status of

the development team is examined daily with

*1 Waterfall development: A development method in which the
processes of definition of requirements, design, implementa-
tion and evaluation are performed in order.

*2 Extreme Programming: A type of agile software development
methodology that takes rules of thumb to the extreme for ef-
ficient development.

*3 Kanban: A type of agile software development method in
which work items are visualized in a list called “Kanban” to
continuously implement and improve the work.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 50 ―

three questions (what was done yesterday,
what needs to be done today, and are there
any obstacles?). 15 minutes maximum, no
extensions.

(2) Sprint*4 review: A place for the PO to re-
view the development team’s sprint artifacts
(apps). These are presented to the relevant
stakeholders. After that, the team may get
feedback and revise the apps.

(3) Sprint planning: Also called a planning meet-
ing, and where a development plan for a
sprint is made. The PO talks about the what
and why of the product backlog, and the de-
velopment team talks about the how. The de-
velopment team also talks about how likely

they are to achieve the requirements of the
product backlog in this sprint.

(4) Sprint retrospective: This ceremony is also
called a “look back” and is used to repeat
improvements so that the work can be done
even better. The ceremony entails sorting
out what went well in the sprint and what
can be improved in the future. Rather than
fixing bugs, fix the processes in which bugs
are created. In our project, we use the KPT
method*5 to share and agree with members
on what to continue and improve in the fol-
lowing sprints.

(5) Backlog refinement*6: Maintenance of the
product backlog for subsequent sprints.

(2) SM

Development team

Communication
Device Development
Department

Business department

DOCOMO
Scrum team

(1) PO

Prioritizes requirements in view of
business

Proposes priority of requirements in view
of efficiency of development, and refines
requirements and specifications.

Adds test perspectives to tests to be conducted
during sprints and conducts acceptance tests.

PO team

Test team

(3) Development
members

The three
roles in the
Scrum Guide

(1) PO

Figure 1 Organization chart

*4 Sprint: A short development period, limited by the Scrum
Guide to no more than one month.

*5 KPT method: A framework for reviewing the progress of a
project, in which “Keep (good things),” “Problem (issues),” and
“Try (improvement measures for problems)” are listed and re-
viewed for approaches and procedures during a sprint period.

*6 Backlog refinement: One of the events defined in Scrum. The
process of cleaning up the product backlog for subsequent
sprints.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 51 ―

3) The Three Artifacts in Scrum
(1) Product backlog: A description of the re-

quirements for each function of the entire
product, the so-called wish list. Prioritizes
and arranges the features with the highest
value so that they are developed in order
from the top of the list. Priorities need to be
constantly updated so that they are the lat-
est.

(2) Sprint backlog: The division of the product
backlog into specific tasks.

(3) Sprint artifact: Created by the development
team on a sprint-by-sprint basis and is an
artifact for which release decisions can be
made. In app development, this means a work-
ing app and documentation.

2.3 Structure of Our Project
For our project, the business department and

the Communication Device Development Depart-
ment are acting as the PO team on Scrum devel-
opment. The Communication Device Development
Department is responsible for proposing priorities
based on development efficiency, while the busi-
ness department is responsible for final prioritiza-
tion based on business. The SM and development
team consist of members from the development
contractor, and the test team consists of members
from the test contractor (Fig. 1).

3. Scheme for Short-cycle Release
3.1 Requirements Definition Phase
1) Development Prioritization

The business department assigns business pri-
orities to the development requirements, and the

Communication Device Development Department
and the development team arrange the develop-
ment requirements in detail in order of highest
priority. Requirements arranged in detail are fed
back to the business department to determine de-
velopment priorities.

(1) Business priority assignment
For each development requirement, the

business department explains to the Com-
munication Device Development Department
and the development team the priority of
the requirement and how it will benefit the
business. By doing so, the entire team gains
common recognition of the objective, and
the Communication Device Development De-
partment and the development team are
able to arrange requirements into details
and prioritize the development appropriate-
ly in subsequent processes.

(2) Arranging requirements in detail
The Communication Device Development

Department and the development team re-
fine the requirements in order of priority of
development requirements assigned by the
business department, and further divide func-
tions. The Communication Device Develop-
ment Department assigns development pri-
orities to the functions arranged in detail
judged on business effects, development scale
and development efficiency. The divided de-
tailed functions and development priorities
are fed back to the business department,
which makes the final decision on develop-
ment priorities.

2) Integrated Ticket*7 Management
Efforts are made to efficiently update and share

*7 Ticket: A task or issue that arises in a development project.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 52 ―

tickets with all members, from the PO team to the
development team (Figure 2). After the PO team
describes the requirements (what, why) as parent
issues in the ticket management tool, the devel-
opment team describes the details of the work
(how) to realize these as sub issues. In addition, by
discussing how to implement the changes on the
source code review tool and linking it to the ticket
management tool, it is now possible to understand
and manage changes in the source code due to
which requirements and which tasks in an inte-
grated manner.

As a result, misunderstandings and omissions
in requirements, tasks, and source code modifica-
tions are less likely to occur, which means reduced
reworking.

(1) Requirements
In the requirements stage, the PO team

not only describes the details in the ticket
management tool in as much detail as pos-
sible, but also focuses on the background
and purpose of why the development re-
quirement was made. As a result, we cre-
ated an environment in which each mem-
ber of the development team can actively
consider the design from a business per-
spective when the team moves into doing
specific tasks.

(2) Work details
The parent issue is the requirement, and

the development team describes the work
required to implement the software based
on the requirement as sub issues. Linking

Prioritize and draft requirements

Discussion of requirements

Linkage with review tools
*Where was the source code fixed?

Discussion
at the
source
code level

PO team

Development
team

Integrated
management

Source code review

[Source code review tool]

[Ticket management tool]

Parent
issue

(requirement)

Sub
issues
(work)

Implemen-
tation
(source
code)

Figure 2 Integrated ticket management

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 53 ―

requirements to work details ensures that
no content to be implemented is omitted.

Also, linking work content with the source
code review tool makes it possible to under-
stand processes in later reviews by map-
ping modifications in the source code.

(3) Supplement with text chat tools
Tickets are not created for minor Q&A,

etc., so instead, text chat tools are used to
conduct Q&A. Compared to e-mail and tick-
eting tools, text chat tools do not require
greetings and can be used to ask questions
without strict classification of the content.
This has the effect of reducing communica-
tion costs such as time spent on writing,
and even when details have not yet been
decided, the content is solidified as the chat
continues, which is useful for aligning mem-
bers’ thinking before ticketing and for de-
tailing ticket content.

3.2 Development Phase
For the development phase, we have built a

system that does not distribute information such
as documents and source code necessary for de-
velopment to individual work terminals, but stores
such information on the cloud so that members can
share it. The system can also be linked to tools
that need to be executed continuously, such as
post-build signing, so that builds*8 can be execut-
ed automatically on a regular basis.
1) Development Tools in the Cloud

(1) Cloud management of source code
The source code is stored in the cloud

and can be easily accessed from each per-
son’s work terminal regardless of location,

so that the same source code can be shared
by the entire development team. Also, by
explicitly displaying commercial branches*9
and development branches, we also devised
a way to prevent regression*10 and other
problems.

(2) Review circulation tool
Although the source code is reviewed

by experts from the development team, we
introduced a tool to track the log of who
circulated the code and what was pointed
out and corrected so that the opinions of
the team can be widely confirmed. This helps
to eliminate omissions of revisions and also
enables full management of review progress
within teams.

(3) Source code analysis and obfuscation*11
Before a build, static parsing*12 of the

source code is performed. Previously, results
were not shared because we performed this
on each person’s work terminal. Currently,
the results of the analysis are displayed in
the cloud so that each person can check
them and they can be deployed horizontally.

Apps are also obfuscated before being
made commercially available to avoid anal-
ysis by reverse engineering*13. To ensure
that there are no obfuscation omissions, ob-
fuscation is performed using a tool in the
cloud, and the results are logged on a serv-
er so that the status of obfuscation can be
shared among development team members.

2) Tool Automation
(1) Automatic build execution

In general, development team members
often build applications individually as needed,

*8 Build: A process or operation to create files executable on a
terminal or distribution packages based on source code.

*9 Branch: In version control, a branch from the master history
that is recorded. For example, a commercially available ver-
sion is called a commercial branch, and a version that is not yet
commercially available and still under development is called a

development branch.
*10 Regression: Reduced performance or function degradation that

occurs with software upgrades, mainly caused by the revival
of past defects.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 54 ―

but in such cases, there are issues such as
the version to be verified being different
for each member. For this reason, we in-
troduced a rule that the system would au-
tomatically run builds on a regular basis
(specifically, once a day at night) and work
the next day with that app as the latest
version. This means the entire team can
now share the most recent app version, and
hence there is no more regression caused
by proceeding with verification work on old
apps. In addition, by keeping and sharing
the history of the changes as a log on the
server, the entire development team is made
aware of source code changes and the num-
ber of missed changes has been reduced.

(2) Signing automation
To clarify to the user that apps are for

services provided by NTT DOCOMO, apps
are given a signature. Until now, apps built
by the development team have been up-
loaded to the signature granting server by
the Communication Device Development De-
partment for signature granting. However,
to eliminate the hassle of transferring files
to and from the development team and to
speed up development, the Communication
Device Development Department is now
responsible for building source code stored
as a commercial branch in the cloud. In ad-
dition, the manual signature granting pro-
cess was eliminated by creating a script*14
that automatically sends apps to the signa-
ture granting server after a build and grants
them signatures.

3.3 Test Phase
Conventionally, after the final sprint when de-

velopment of all requirements was complete, op-
eration of all requirements was checked as an ac-
ceptance test and a market release decision was
made. This required lots of time required for ac-
ceptance testing, and many defects were detected
at the end of development. This approach resulted
in rework and time needed to fix problems before
market release, making it impossible to achieve
short release cycles.

Therefore, to detect defects as early as possi-
ble in the development stage, we decided to con-
duct some of the tests, which had been conducted
collectively in acceptance tests, in front-end pro-
cesses during the sprint period.
1) User Scenario Testing

As shown in Figure 3 (a), before improving the
test phase, user scenario testing was conducted
after the final sprint when all functions had been
implemented, which resulted in long test time and
detection of many defects at the end of develop-
ment. Therefore, we changed to a policy of con-
ducting user scenario testing of developed re-
quirements in each sprint (Fig. 3 (b)). This result-
ed in early detection and solving of problems ear-
ly in the development process. The time required
for testing was also shortened by changing re-
quirement verification after the implementation of
all functions to exploratory testing*15.
2) Regression Testing

Similar to user scenario testing, before test phase
improvements, regression testing was started af-
ter the final sprint when all functions had been
implemented, and defects were detected at the
end of development (Fig. 3 (a)).

*11 Obfuscation: Processing of source code to make it difficult for
humans to understand without changing the behavior of the
program so that malicious users cannot easily decipher or tam-
per with the application.

*12 Parsing: Analyzing source code to find out where it violates
rules or syntax.

*13 Reverse engineering: The study and clarification of the tech-
nical information of an application by observing the behavior
of its software or analyzing its source code.

*14 Script: A simple programming language for describing pro-
grams for simple processes. A program described by a script
may also be called a script.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 55 ―

Therefore, we changed the policy to conduct
regression testing on artifacts at the completion of
each sprint. In consideration of the number of man-
hours required for testing, we also automated re-
gression testing. This made it possible to detect
and correct defects in the early stages of devel-
opment. Defects are now rarely detected at the
end of development (Fig. 3 (b)).
3) Effectiveness

Since we had already confirmed that artifacts
were up to the market quality level at the com-
pletion of each sprint, after implementation of all

functions was complete, only the minimum opera-
tion check was conducted as the final quality check
before market release. Testing used to take about
a month on average after implementing all func-
tions, but this has been reduced to about three
business days.

4. Changes Associated with
Remote Development

4.1 Overview
Considering the risk of a mass outbreak of the

(a) Before test phase improvement

All functions
implemented

Development
team

Test team

Design and
implementation

Unit and coupling
tests

Comprehensive
testing

Final sprint - 1 Final sprint

Design and
implementation

Unit and coupling
tests

Comprehensive
testing

User scenario testing for all target market release
requirements

Regression testing

Past model testing

Market release

Fault detection

(b) After test phase improvement

All functions
implemented

Development
team

Test team

Design and
implementation

Unit and coupling
tests

Comprehensive
testing

Final sprint - 1

User scenario testing
of target sprint
requirements

Final sprint

Design and
implementation

Unit and coupling
tests

Comprehensive
testing

Exploratory testing of
target market release

requirements

Regression testing
Regression testing after the
end of the previous sprint

Past model testing

User scenario testing
of target sprint
requirements

Market release

Regression testing after the
end of the previous sprint

Figure 3 Shortened test time with improved test phase

*15 Exploratory testing: A method of executing tests while check-
ing software behavior and test results, rather than creating
test cases in advance. Since it does not involve prior test de-
sign or pattern exhaustive testing, exploratory testing can be
conducted more quickly than conventional descriptive testing
and is well suited for agile development.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 56 ―

novel coronavirus in the agile development team,
the team shifted to remote work development.
This involved various Scrum ceremonies also be-
ing changed from face-to-face meeting to methods
suitable for remote development. Although there
were some issues unique to remote work, such as
communications and security, we were able tran-
sition smoothly by devising methods that did not
compromise productivity.

4.2 Examples of Migration to Remote
Work

1) Various Scrum Ceremonies
(1) Daily Scrum

Before transitioning to remote work, all
members would gather in front of a large
screen monitor displaying the ticket man-
agement tool to check the progress of each
member. After the transition to remote work,
a Web conference system was introduced
to check the progress of each member while
sharing the ticket management tool on the
screen so that the daily Scrum can be held
as it was before transitioning to remote work.

(2) Sprint planning, sprint retrospective
For these two ceremonies, we are con-

ducting Web conferences in which partici-
pants can see each other’s faces, as these
are Scrum ceremonies with a lot of discus-
sions among members. Early in the transi-
tion to remote work, we would hold Web
conferences without showing our faces, but
since we could not read each other’s reac-
tions and thoughts through audio alone, we
gradually lost the ability to have active dis-
cussions due to anxiety and the impact this

had on motivation.
Therefore, we made it a rule in principle

to participate in Web conferences showing
our faces. By showing our faces to each other
we can obtain additional visual information
from non-vocal information such as facial
expressions, gestures and eye contact. As a
result, we are now able to have active dis-
cussions to a degree similar to before the
transition to remote work.

For sprint retrospectives, before the tran-
sition to remote work, the KPT method was
used with labels and simili paper. While phys-
ical tools are no longer available due to the
transition to remote work, sprint retrospec-
tives can be operated in the same way as
before the transition to remote work by us-
ing spreadsheets*16 instead. As a side effect
of using spreadsheets, it became easier to
check past history because it was electronic.

(3) Sprint review
Before the transition to remote work, op-

erations were checked using the actual de-
vice at the sprint review and the PO team
made the acceptance decision on the spot.
In contrast, since the transition to remote
work, we have been using a test distribu-
tion tool to distribute the app as a sprint
artifact so that each member can download
the app to an actual device at home and
check its operation. We also have prepared
demonstration videos and play them during
sprint reviews to prevent any discrepancies
in perception among members.

These initiatives have made it possible for
the PO team to make acceptance decisions

*16 Spreadsheet: A type of Web application that can be edited by
multiple people at the same time. Because it can be known
who is editing which part of the sheet in real time, a spread-
sheet can be used as a substitute for sticky notes or simili pa-
per and hence enables efficient work.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 57 ―

at sprint reviews, just as they did before the
transition to remote work.

(4) Backlog refinement
Backlog refinement, which used to be con-

ducted in person before the transition to
remote work, can now be conducted in the
same way as before the transition thanks to
the introduction of the Web conference sys-
tem.

2) Others
(1) Communication outside Scrum ceremonies

The entire team is always connected by
voice during working hours by using a tool
that has a voice chat function. This enables
member to feel free to talk to each other
even when minor questions arise and com-
municate closely similar to when everyone
was at the same location before the transi-
tion to remote work.

Other than voice, we also use text chat
as a real-time communication method. To
facilitate communications when complex ex-
planations are required for operating pro-
cedures or causes of problems for example,
text chat can be used as a supplementary
tool to voice communication. Before the tran-
sition to remote work, we used a white board
to align members’ thinking, but since the
transition to remote work, we use text chat
instead.

(2) Workshop
We have deepened relationships among the

members and promoted self-organization*17
by holding regular workshops where each
group discusses issues related to develop-
ment and feeds back the results to the

development. Since it became difficult to
hold face-to-face meetings after the transi-
tion to remote work, relationships cultivat-
ed during development at our base are be-
ing utilized even after the transition to re-
mote work and have led to the maintenance
of productivity even under remote work by
fostering an atmosphere where opinions can
be frankly discussed.

In the future, we are also considering
holding workshops remotely so that we can
continue to maintain these relationship even
when members are replaced.

(3) Security
Information security risk is an important

factor in remote work development. When
the development was done in groups at our
base, an ID card was required to enter the
room, and people who were not involved in
the project were not allowed in. However,
when development is done at home, people
who are not involved in the project, such as
family members, may be able to enter and
leave workrooms. Similar to physical measures,
it is important to set certain rules and en-
sure that development team members fol-
low those rules. The Telework Security
Guidelines from the Ministry of Internal Af-
fairs and Communications recommend the
implementation of measures that balance
rules, people and technology [3]. From early
on in our project, we have been working
with the development team to study coun-
termeasures against information security
risks, as described below.

*17 Self-organization: Instead of having a manager, team members
manage projects autonomously. Members make plans them-
selves, share daily progress and solve problems.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 58 ―

(a) Formulation of rules for secure operations
In formulating the operation rules, we

referred to the content of the guidelines
set by the security departments of the
companies involved in the project.

Specifically, work is to be done in a
secure environment such as an isolated
private room, the use of loaned PCs is
mandatory, the use of personal PCs is
prohibited, free software is not to be in-
stalled, and PCs are not to be taken out-
side the home, etc.

These operational rules were made
into an itemized checklist. The entire team
first reads the document, and then each
person is asked to check it once a month
to ensure that individuals regularly re-
acquaint themselves with it and that it
is being used appropriately.

(b) Source code and documentation management
The source code is stored in the cloud.

To maintain security, the development
environment on the cloud is accessed via
a Virtual Private Network (VPN) connec-
tion*18 after authentication with an ID,
password, and client certificate assigned
to each individual.

Documents such as specifications and
design documents are stored on a serv-
er at the development vendor base. The
information on the server can be viewed
and edited using a remote desktop, which
allows remote control of the PC at the
base from the home. It is prohibited to
physically take the information home.

(c) Device management
For remote work development, it was

decided to prohibit the use of individual-
ly purchased computers and to mandate
use of computers loaned by the company.
The development of the docomo TV ter-
minal app also requires verification of op-
erations on various smartphones and tab-
lets. This meant it was necessary for each
member to also take home smartphones
or other devices to check the app. To
manage and ensure that these devices
are in proper working order, a visual
check is conducted every morning via
video call to check where PCs and de-
vices are and ensure that they can be
turned on. This reduces the risk of loss
or malfunction, and also enables quick
response in case of loss or malfunction.

5. Productivity and Quality in
Agile Remote Working

5.1 Productivity
We examined team productivity when they

were developing together at the base and after
the transition to remote work.
1) Velocity Trends

In Scrum development, there is a number called
velocity. The average amount of work that a Scrum
team completes during a sprint is expressed by a
unit of “story point,” A value expressed in this way
is called “velocity.” Velocity is a relative value and
is used as a reference to see how much work
(tickets) can be completed in the next sprint, and
to understand the growth of the team.

*18 VPN connection: A method of connecting to a public network
such as the Internet using a virtual dedicated line environ-
ment protected by authentication and encryption technolo-
gies.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 59 ―

Figure 4 shows the velocity of the docomo TV
terminal app development team and the trend in
corresponding story points per person. In this pro-
ject, the number of people in the development team
changed at the same time as the transition to re-
mote work, so we checked the story points per
person trend before and after the transition to re-
mote work rather than the velocity of the entire
team. Immediately after the switch to remote work,
there was a temporary drop in the trend, but this
recovered and stayed at the same level as before
the switch, indicating that the team was able to
operate without losing productivity.

Since we were able to operate without losing
productivity, there has been no impact on release
schedules or frequency of app releases.
2) Happiness Level Trends

Happiness level is a five-point score of how

happy individuals feel based on their work con-
tent, role and ease of working, and is an indicator
of whether the organization is a vibrant place to
work. In our project, we interviewed members of
the development team about their level of happi-
ness in each sprint, calculated the average, and
analyzed this trend (Figure 5).

Immediately after the transition to remote work,
many people were confused by the change in en-
vironment and were temporarily depressed but
later recovered. We heard many positive comments
about working on development from home, such
as having more time to spend with family. In agile
development, it is said that the higher the happi-
ness level of the team, the higher the productivity.
It can be seen that the happiness level trend is
similar to the velocity trend shown above.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0

10

20

30

40

50

60

70

80

90

100

ベロシティ合計 1人当たりの完了ストーリーポイント

Switch to remote work

Completed story points per personVelocity total

Figure 4 Trends in velocity

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 60 ―

5.2 Quality
To verify whether there was any change in

the quality of the app before and after the transi-
tion to remote work, Figure 6 shows the bug de-
tection rate per number of kSteps added during

the development phase. The quality target for the
app is less than 1 item/kStep. We achieved less
than 1 item in all sprints, meaning that compared
to before, there was no decline in quality after the
switch to remote work.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Switch to remote work

Figure 5 Trends in happiness level

0

0.2

0.4

0.6

0.8

1

1.2

Switch to remote work

Figure 6 Trends in bug detection rate per kStep added in the development phase

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Migrating an Agile Application Development System to an Efficient Remote Work Environment - A Case Study

 NTT DOCOMO Technical Journal Vol. 23 No. 2 (Oct. 2021)

 ― 61 ―

6. Conclusion
In this article, we described a case study of an

agile development project’s transition to efficient
remote development. With remote development,
we were able to achieve short release cycles while
maintaining quality and productivity. Agile devel-
opment is a method that involves continuous im-
provement. Hence, we will continue our efforts to
improve it and achieve more efficient development
going forward.

REFERENCES
[1] K. Beck et al.: “Manifesto for Agile Software Devel-

opment,” 2001.
https://agilemanifesto.org/iso/en/manifesto.html

[2] K. Schwaber and J. Sutherland: “The Definitive Guide
to Scrum: The Rules of the Game,” Nov. 2020.
https://scrumguides.org/docs/scrumguide/v2020/202
0-Scrum-Guide-US.pdf

[3] Ministry of Internal Affairs and Communications:
“Telework Security Guidelines” (In Japanese).
https://www.soumu.go.jp/main_content/000545372.pdf

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

	02-06E_アジャイル開発リモート移行48
	02-06E_アジャイル開発リモート移行49
	02-06E_アジャイル開発リモート移行50
	02-06E_アジャイル開発リモート移行51
	02-06E_アジャイル開発リモート移行52
	02-06E_アジャイル開発リモート移行53
	02-06E_アジャイル開発リモート移行54
	02-06E_アジャイル開発リモート移行55
	02-06E_アジャイル開発リモート移行56
	02-06E_アジャイル開発リモート移行57
	02-06E_アジャイル開発リモート移行58
	02-06E_アジャイル開発リモート移行59
	02-06E_アジャイル開発リモート移行60
	02-06E_アジャイル開発リモート移行61

