
Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 13 ―

 (Special Articles)

Special Articles on Use of Public Clouds

Managing Multiple Kubernetes
Clusters with a Cloud Orchestrator

DOCOMO Innovations, Inc. Masato Takada Yas Naoi

Kubernetes was originally created by Google developers, but is now developed
as an open-source project by the CNCF. It is a system that enables users to op-
erate containerized applications efficiently in any environment, and is currently
used by many companies including industry leaders. Around 2018, a growing num-
ber of companies started using multiple Kubernetes clusters in individual projects,
but at the time there were no tools for managing multiple Kubernetes clusters.
Therefore, DOCOMO Innovations, Inc. developed an open-source Cloud Orches-
trator to facilitate the centralized management of multiple Kubernetes clusters.
This software is currently being used on DOCOMO’s internal commercial systems,
an example of which is described in this article.

1. Introduction
With the advent of Docker*1 in 2013, applica-

tions and system environments could be logically
separated by using container virtualization*2 tech-
nology to virtualize containers at the OS level. This
made it possible to deploy*3 and update containers

in workloads*4 even faster than before. Docker, on
the other hand, has had issues related to container
management, scalability, and automatic recovery.
Users have had to solve these issues before using
each environment, but this can involve a lot of work.
Kubernetes [1], which has recently gathered a

broad community of users, is an open-source solution

Containers AWS Kubernetes

©2021 NTT DOCOMO, INC.
Copies of articles may be reproduced only for personal, noncommercial
use, provided that the name NTT DOCOMO Technical Journal, the
name(s) of the author(s), the title and date of the article appear in
the copies.

All company names or names of products, software, and services
appearing in this journal are trademarks or registered trademarks of
their respective owners.

*1 Docker: Container-type virtualization software. A registered
trademark of Docker Inc.

*2 Container virtualization: A computer virtualization technique where
dedicated areas called containers are created on a single host OS, and
the necessary application software is run within these containers.

*3 Deploy: Installing applications by placing them in their execu-
tion environments.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 14 ―

that aims to solve this problem. Kubernetes takes
its name from the Greek word for “helmsman,” re-
flecting its purpose as a tool for managing and au-
tomating the operation of containers. It provides
developers with great benefits such as manage-
ment of multiple containers, autoscale*5, and au-
tomatic recovery functions without having to pre-
pare a framework*6 for containers on their own.
Kubernetes has already become a de facto stand-
ard in the field of cloud computing. For example,
Amazon Web Services (AWS)*7 uses Elastic Ku-
bernetes Service (EKS)*8, Microsoft Azure*9 uses
Azure Kubernetes Service (AKS)*10, and Google
Cloud Platform (GCP)*11 uses Google Kubernetes
Engine (GKE)*12. In addition to these managed ser-
vices*13, there are also many other services pro-
vided by private cloud*14 vendors such as VMware
and Red Hat.
At DOCOMO, some projects started deploying

multiple Kubernetes clusters on their own systems
from around 2017. However, when using multiple
clusters*15, system operators were faced with is-
sues of increased operating costs and variations in
resource utilization between clusters. For this rea-
son, we developed a Cloud Orchestrator (CO) as
an open-source orchestration tool for managing
multiple Kubernetes clusters on Drupal*16. This
article describes the features of CO and presents
some examples of its use within the company.

2. Kubernetes
2.1 Overview
While Docker is a useful tool for running on a

single server, it suffers from a number of issues in
large-scale environments consisting of multiple serv-
ers. Kubernetes is a container orchestration tool
designed to manage containers for large-scale en-
vironments of this sort, and has become the de fac-
to standard worldwide. Kubernetes evolved from
Borg, which was originally developed by Google
engineers. Having accumulated the container or-
chestration know-how that was used by Google,
Borg became the progenitor of Kubernetes. In 2014,
Kubernetes was open sourced in the Kubernetes
project, which was transferred to the Cloud Na-
tive Computing Foundation (CNCF)*17 in 2016 for
community-based development.

2.2 Architecture
As shown in Figure 1, Kubernetes consists of

two types of nodes: a master node and worker
nodes. In a cluster, applications and their setting
values are managed in units called resource ob-
jects. A resource object is defined by a manifest
file,*18 which the user works with when creating
or updating the resource object. The constituent
elements of Kubernetes are as follows:
1) Master Node
A node that manages an entire cluster and per-

forms the roles of worker node management and
pod management. A control plane is set as the de-
fault when deploying a cluster. The control plane
is a component that controls the components that
control a cluster and manages the cluster’s inter-
nal state and configuration. The user operates the
entire cluster by using a command line tool called
kubectl (described later) to access the Application

*4 Workload: An indicator of the size of a system’s load, such as
the CPU utilization rate. In particular, in a public cloud envi-
ronment, the workload may represent the system itself, in-
cluding the OS and application code running on the cloud. In
this paper, we use the term in this latter sense.

*5 Autoscale: A system that automatically adjusts the number of
virtual servers on demand according to the quantity of re-
sources required for processing at any given time, such as
network traffic and CPU usage.

*6 Framework: Software that encompasses functionality and con-

trol structures generally required for software in a given do-
main. In contrast to a library in which the developer calls
individual functions, code in the framework handles overall
control and calls individual functions added by the developer.

*7 AWS: A cloud computing service provided by Amazon Web
Services, Inc.

*8 EKS: A managed Kubernetes service in AWS.
*9 Microsoft Azure: A cloud computing service provided by Mi-

crosoft Corporation.
*10 AKS: A managed Kubernetes service in Microsoft Azure.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 15 ―

Figure 1 Kubernetes architecture

Programming Interface (API)*19 server provided
by the control plane.
2) Worker Node
A node hosting a pod that stores the applica-

tion containers. This includes components such as
kubelet and kubeproxy, which are described later.
3) Pod
An execution unit in a Kubernetes application

that encapsulates the application’s container, stor-
age, network information (network ID, IP address,
etc.) and options for managing execution methods.
It can also store multiple containers.
4) Manifest File
A file that describes the resource configuration,

using JavaScript Object Notation (JSON)*20 or YAML
(a recursive acronym for “YAML Ain’t Markup
Language”)*21 as the file format. By declaring this
file via the API, it is possible to manipulate resources
in the cluster.

2.3 Components
The components shown in Fig. 1 are described

below.
(1) kubectl

A command used by the user to send re-
quests to kube-apiserver in order to create,
update and delete resources.

Kubernetes cluster

Master node

Worker node #1

Worker node #2

Manifest file
(YAML/JSON)

UI/CLIDefinitions

(7) kubelet

(8) kube-proxy

(7) kubelet

(8) kube-proxy

Pod #1

Container

Container

Pod #2

Container

Pod #1

Container

Container

Pod #2

Container

Control plane

(1) kubectl

(6) Cloud-controller-
manager

Via API

Component

(5) etcd

(4) kube-controller-
manager

(3) kube-scheduler

(2) kube-apiserver

*11 GCP: A cloud computing service provided by Google LLC.
*12 GKE: A managed Kubernetes service in GCP.
*13 Managed service: Cloud services whose resource provision-

ing, operation, etc. are mostly the responsibility of the cloud
operator. Among cloud computing services, these are referred
to as PaaS and SaaS, for example.

*14 Private cloud: Refers to an in-house cloud system configured
in a corporation or organization, and provided to various in-
house divisions or group companies. In contrast, open cloud
services that do not restrict their services to certain users are

called “public cloud” services.
*15 Cluster: A grouping of multiple servers as a single server group.
*16 Drupal: An open-source content management system, similar

to WordPress and Joomla.
*17 CNCF:

*18 Manifest file: A configuration file that declares the functions

and other items used by an application. A manifest file must be
prepared for each application of every Kubernetes resource.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 16 ―

(2) kube-apiserver
This is responsible for the front end that

provides the external API of a Kubernetes
cluster.

(3) kube-scheduler
Monitors to check if a new pod has been

assigned to a worker node. If not, it assumes
responsibility for running the pod. Schedul-
ing decisions are made in consideration of
several factors, such as resource utilization
and hardware/software/policy constraints.

(4) kube-controller-manager
A component that manages the status of

worker nodes and pods via kube-apiserver.
It takes responsive action when a node goes
down, and manages pod replication.*22

(5) etcd
A key-value store*23 that stores all the

Kubernetes cluster information. It can also
be used as a Kubernetes data store*24.

(6) cloud-controller-manager
Manages objects specific to a cloud op-

erator, such as nodes, routing, and storage.
(7) kubelet

An agent that runs inside worker nodes
and guarantees the operation of each pod.
It also monitors the content defined in the
manifest file to make sure they match the
container settings, and manages the execu-
tion environment*25 of nodes and containers.

(8) kube-proxy
Performs communication control (rout-

ing) between containers.

2.4 Supported Functions
Kubernetes not only manages containers on

multiple servers, but also supports a number of
painstaking aspects of operation, such as automatic
scaling of containers and automatic recovery*26 in
the event of a failure. Some key features are dis-
cussed below.
1) Network Load Balancing
When accesses are concentrated on some of

the containers, the state of these containers is sta-
bilized by distributing traffic to other containers.
2) Rolling Updates/rollbacks
To apply updates, the user only needs to change

the state of the container in the manifest file. Ku-
bernetes will then take care of applying this up-
dated state (rolling update). If an application update
fails, it can be easily reverted to its previous state
by simply restoring the manifest file to its previ-
ous state (rollback).
3) Automatic Picking
For each task, it is possible to define which

nodes should be executed, which resources should
be used, and the priority for each task.
4) Automatic Repairs
If a container is stopped due to a failure or

some other issue, the system automatically detects
this state and restarts it.

2.5 DOCOMO’s Challenges with
Kubernetes

One project at DOCOMO has already been us-
ing several large Kubernetes clusters on commer-
cial systems since around 2017. However, Kuber-
netes is only able to manage its own cluster, so the

*19 API: A specification describing the interface whereby soft-
ware components can exchange information with each other.

*20 JSON: A data description language based on JavaScript object
notation.

*21 YAML: A notation and processing format for describing data
structures, similar to XML and JSON.

*22 Replication: In a database, a mechanism for providing redun-
dancy and creating backups by replicating data to other
servers.

*23 Key-value store: A storage system that manages records (data)

as combinations of keys and values, unlike a conventional re-
lational database.

*24 Data store: A system that stores data.
*25 Execution environment: A system environment that only sup-

ports execution processing and lacks systems required for
software development (e.g., libraries and test environments).

*26 Automatic recovery: A system that automatically switches to
a redundant standby system in the event of a system failure.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 17 ―

system operators had to manage multiple Kuber-
netes clusters individually. For example, to ascer-
tain the status of containers across multiple clus-
ters, it was necessary to access each individual
cluster to check its status. Furthermore, since the
clusters were divided according to their function,
there was a large disparity in resource utilization
between clusters. For example, while one cluster
had to temporarily add instances*27 due to a short-
age of resources, there were other clusters with
resources that were sitting idle. These issues would
not have arisen if load balancing*28 and job sched-
uling functions had existed so that tasks could be
distributed among Kubernetes clusters.
When this issue came to light in around 2018,

there was no open-source software or external
tools capable of solving it. For this reason, we de-
veloped CO. From around 2019, other similar prod-
ucts became available from leading companies
(such as Uber and Rancher) that have been using
Kubernetes intensively.

3. What is CO?
3.1 Development Background
DOCOMO’s CO project was launched in early

2018 on an open-source platform called Drupal. Our
initial goal was to manage multiple accounts, pri-
marily AWS. DOCOMO has a large number of ac-
counts, and it is not uncommon for a single pro-
ject to have multiple accounts for different pur-
poses such as development, Quality Assurance
(QA)*29 and commerce. The AWS website is basi-
cally divided into services by region*30, so even

parts of the service cannot be checked on the same
page if the service spans multiple regions. As a
result, there were many cases where developers
launched instances in various regions without the
administrator’s knowledge, and then failed to stop
or delete these instances, which only came to the
administrator’s attention when viewing the billing
information*31. In order to prevent such problems,
CO provides a function for visualizing the list of
resources under all registered account information
on the same page, a function for automatically stop-
ping a cluster based on resource utilization and time
constraints, and a single sign-on*32 function. When
we ran into Kubernetes issues within DOCOMO,
we extended CO based on the features we were
using for AWS and started applying them to Ku-
bernetes clusters around the end of 2018.

3.2 Architecture & Components
CO consists of three main parts: a user inter-

face (including a portal function), various function-
al parts for purposes such as user management
and cluster management, and a connector part for
cloud and Kubernetes clusters.
As shown in Figure 2, CO provides portal func-

tions. From this screen, it is possible to see at a
glance the cloud information and Kubernetes clus-
ters that are currently in use. In addition, by bring-
ing up the cluster information, it is possible to vis-
ualize the current status of information in the form
of tables and pie charts. The display can be cus-
tomized from the management screen and can be
freely changed by the user. In addition to this visu-
alization function, the portal functions include many

*27 Instance: A virtual server that is made available on demand
in cloud computing. A virtual server has a sporadic life cycle
from start to finish. For example, it might start and finish on-
ly when a certain process takes place.

*28 Load balancing: A mechanism for distributing high-load pro-
cesses across multiple servers.

*29 QA: In software development, the act of ensuring the quality
of deliverables or providing quality assurance.

*30 Region: The region in which a data center providing cloud
services is located.

*31 Billing information: Information about charges accrued through
the use of cloud services.

*32 Single sign-on: The ability to log in to multiple services with
a single account. Allows users to access all the functions to
which they are entitled by only performing a single system
authentication step.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 18 ―

Figure 2 CO portal screen

other functions such as deploying tasks to be run
on a cluster, and selecting clusters for deployment.
Furthermore, since Drupal provides REST (REp-
resentational State Transfer) API*33 functions, it is
possible to execute functions on the portal via the
API.
As shown in Figure 3, CO provides many func-

tions such as user management, cluster manage-
ment, and job scheduling. Drupal’s role*34 manage-
ment features enable the definition of basic CRUD
(Create, Read, Update and Delete)*35 functions for
any function or service. By extending this func-
tionality, CO can specify CRUD operations for all
resource objects in a Kubernetes cluster. With this
role management, even if different users deploy
their own tasks on the same cluster, interference
between these users can be prevented as long as
each user is granted a role that can only affect his

or her own tasks (i.e., the minimum necessary role).
This idea is a fundamental feature underpinning
the cost optimization discussed below.
The connector part uses APIs provided by

various clouds and Kubernetes clusters, which we
modularize and make available to users. The us-
ers can turn on these module functions and start
receiving information periodically.

3.3 Key Features
This section describes the main functions of

CO.
1) Single Sign-on
By making use of Drupal’s single sign-on fea-

ture, CO can be linked to various clouds. Also, since
Kubernetes clusters do not have user authentica-
tion functions, CO provides its own user authenti-
cation functions.

View pod occupancy as a
heat map

Display cluster CPU,
memory and pod usage as a

pie chart

Display cluster billing and
resource utilization rates in

tabular form

*33 REST API: An API conforming to REST. REST is a style of
software architecture developed based on design principles
proposed by Roy Fielding in 2000.

*34 Role: A group of users that grants certain privileges to its
members.

*35 CRUD: An acronym representing the four basic operations of
software used to provide systems and services (create, read,
update & delete).

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 19 ―

Figure 3 Cloud orchestration/optimization components

2) Resource Optimization
When CO manages multiple Kubernetes clus-

ters, this function automatically performs load bal-
ancing between clusters. For example, when de-
ploying any container, it automatically deploys it
to the least occupied cluster based on the current
resource usage situation. It is also possible for the
user to select the deployment destination cluster
beforehand.
3) Scheduling
CO includes time and resource based schedul-

ing functions. For example, when a user wants to
perform batch processing*36 at a particular time
of day, such as late at night, the task’s deployment

time and end time can be set in advance. It is also
possible to deploy low-priority tasks that run only
when resources are available.
4) Cost Calculation
We specified our own logic to calculate the to-

tal instance cost of the master node and worker
nodes based on the resource usage (memory, CPU,
pod counts). This makes it possible to calculate the
cost in Namespace*37 units.
5) Multi-cloud Management
Like public/private cloud solutions such as AWS,

OpenStack*38 and VMware, Kubernetes clusters
can also be managed in a unified manner. Users
can check their resource usage status in a unified

User
management

SSO

Account
management

UI/portal

Role
management

Permission

Cloud management Metering
Billing cost

management
Cloud provider
management

Monitoring
Network

management
Alert

Log
management

Cloud orchestration/optimization REST API

SDK CLI

Data centerAWS

Kubernetes
(On-premises)

Cloud service provider plug-ins

EKS
(Cloud)

EC2

Provisioning Deploy Autoscaling Failover
Script

management
Cluster

management

Orchestration
Data migration/

deployment
Benchmark

Server migration/
deployment

Container migration/
deployment

Resource/cost
analysis

Resource
optimization

AWS API Kubernetes API OpenStack API

AWS plug-ins Kubernetes plug-ins OpenStack plug-ins

Job management スクリプト実行

Redundancy

Job scheduler BackupJob execution
Resource

management
Job queue

Storage management
Storage provider

management
Quota

management
Repository

management
Container image

management

Existing modules Under development

OpenStack
(On-premises)

Audit log Notification

Already developed

Script execution

EC2: Amazon Elastic Compute Cloud
SDK: Software Development Kit

*36 Batch processing: The automatic processing of data in batch-
es without user interaction.

*37 Namespace: In Kubernetes, a virtual grouping that combines
several different resources into a single unit.

*38 OpenStack: Cloud-infrastructure software that uses server
virtualization technology to run multiple virtual servers on a
single physical server. It can allocate virtual servers to differ-
ent cloud services in use. OpenStack is open-source software.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 20 ―

Figure 4 Changes resulting from CO adoption

manner even if they are working with different
accounts or clusters.

3.4 How to Use CO
CO is an open-source Drupal project that can

be used by anyone [2].

4. DOCOMO Case Study
4.1 Efficient Management of Multiple

Clusters and Free Resources
1) Managing Multiple Clusters
CO is utilized in DOCOMO’s commercial system.

This system features multiple EKSs, with each
cluster having more than 100 nodes. As shown in
Figure 4, before the introduction of CO, adminis-
trators had to check the status of clusters and pods

from the management screen of each cluster, and
had to use a Command Line Interface (CLI)*39 to
deploy containers, which made their work difficult.
However, after the introduction of CO, admin-

istrators no longer needed to check each cluster
individually because CO obtains metrics*40 from
every cluster. Also, when the management screen
is used to register the details of a container and
the Kubernetes cluster in which it is to be de-
ployed, CO can perform the deployment automati-
cally. If multiple Kubernetes clusters are specified
as the deployment destination, then the system can
automatically deploy containers to the selected
cluster group and obtain metrics from each cluster.
As mentioned above, in cluster selection, the user
does not have to select a specific cluster, and can
instead leave CO to use its resource optimization

• Clusters and containers managed
individually

• More complex operations, increased
costs

• Integrated cluster-wide operations
management

• Simplified operation

Before After

1. Deploy

1. Select target
cluster and container3. Deploy

5. Deploy

2. Deploy

2. Monitoring

4. Monitoring

6. Monitoring

4. Monitoring

3. Extract metrics

2. Deploy

3. Extract metrics

2. Deploy

3. Extract metrics

Kubernetes cluster

CO

*39 CLI: An operating method in which all instructions to a com-
puter or software are given in the form of text.

*40 Metric: A quantitative item of information corresponding to
the value of some parameter at a particular point in time,
such as the CPU utilization rate, memory usage, or number of
pods.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 21 ―

Figure 5 Scheduling function

function to automatically select a free cluster.
2) Efficiency of Available Resources
As shown in Figure 5, CO has a time-based and

resource-based scheduling functions. In DOCOMO’s
commercial system, the resource utilization rate of
the entire system tended to be proportional to the
user’s usage. Specifically, the utilization rate can
easily reach 80% or more during the daytime,
when users are most likely to be using the system,
but drops to around 20% late at night. In order to
use the available resources, the CO administrator
registers the container to be deployed, the sched-
uling method, and the necessary parameters, and
CO then deploys the container according to the

registered scheduling method. The containers in
this case do not require real-time performance and
often have a lower priority than other containers,
so a mechanism is employed whereby the removal
of these containers is prioritized during bursts*41
of cluster resource usage. In this commercial sys-
tem, a time-based scheduling function is used to
aggregate the system logs and update the machine
learning models late at night. In addition, when the
resources of one cluster are overwhelmed, the re-
source-based scheduling function automatically dis-
tributes some tasks to other clusters to equalize
the resources of the entire system instead of tem-
porarily adding resources.

R
es

ou
rc

e
u

til
iz

a
tio

n
(%

)
R

es
ou

rc
e

 u
til

iz
at

io
n

(%
)

Time

Time

1. Register container and
specify resources/time

Resource-based
scheduling

Time-based scheduling

Deploy container based on
selected scheduling

[Features]
・Allow container deployment

only during specific time
periods

・Assign priority to pods
when deploying

[Features]
・Allow container deployment

only at specific resource
utilization rates

・Assign priority to pods
when deploying

Permission

CO

*41 Burst: A momentary concentration of multiple signals at a fixed
point in a device, caused by a temporary increase in network
traffic, for example.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 22 ―

Figure 6 Separation of application and system layers by CO

4.2 Separation of the Application
and System Layers

As shown in Figure 6 (a), each of DOCOMO’s
projects creates its own AWS account in which to
develop applications and build systems. With this
model, every project needs to be aware of AWS,
manage its own accounts and system environments,
and understand the security policies. As a result,
deploying services can take a large amount of time.
It also gives rise to various other issues, such as
increased security risks due to the absence of se-
curity experts and increased cloud costs due to
non-global optimization.

To address these issues, we considered separat-
ing the application and system layers at the bound-
ary of CO (Fig. 6 (b)). Although this idea is current-
ly only at the conceptual stage, it would eliminate
the need for application developers to manage lay-
ers below CO and deal with cumbersome security
management as long as their services are contain-
erized, allowing them to concentrate their efforts
on service development. On the other hand, con-
tainerization means that system administrators no
longer need to be aware of the content of an ap-
plication. Centralized management of clusters by
system administrators is expected to improve the

Computing resource

Application A

Container layer

Computing resource

Application B

Container layer

Computing resources
+

GPU resources

Application C

Container layer

Project A Project B Project C

Maintain an AWS account for each project

Each project needs to manage all the services it uses, resulting in additional
operational costs, inefficient resource usage, higher cloud costs, and greater
security risks.

Computing resource

Kubernetes cluster

Computing resource

Kubernetes cluster

GPU (resources)

Kubernetes cluster

Application A Application B Application C

CO

Application and system layers separated with the
CO layer as the boundary

Container
registration

Container
registration

Container
registration

Deploy

A
p

p
lic

a
tio

n
 m

a
n

a
g

e
m

e
nt

S
ys

te
m

 m
a

n
a

g
e

m
e

n
t

Application developers can concentrate on developing applications,
and system administrators can reduce cloud costs and security
risks by performing integrated resource management.

Project A Project B Project C

(a) Before (b) After

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Managing Multiple Kubernetes Clusters with a Cloud Orchestrator

 NTT DOCOMO Technical Journal Vol. 23 No. 1 (Jul. 2021)

 ― 23 ―

overall efficiency of resource usage and reduce se-
curity risks, ultimately bringing down cloud costs
company-wide.
However, with this approach, multiple services

can run on the same cluster, and containers that
perform heavy processes may affect other services.
In addition, application developers will no longer
be aware of cloud costs, so they may run process-
es that are less efficient. In this regard, in addition
to using the Resource Quota*42 and Limit Range*43
functions of Kubernetes, CO uses a cost calcula-
tion function based on information obtained from
the Kubernetes cluster to notify the application
developer of fees accrued through the use of re-
sources such as CPUs, memory, and execution pods.
This can make application developers more cost-
conscious.
We are currently in the process of validating

the above method in cooperation with the Service
Innovation department. There are not enough func-
tions on the CO side to satisfy this approach, so
we will continue to update them.

5. Conclusion
We have described a CO system that manages

multiple Kubernetes clusters. We hope to continue
to improve CO to make use of the knowledge ac-
cumulated by DOCOMO to further streamline the
use of cloud services.

REFERENCES
[1] Kubernetes Web site.

https://kubernetes.io/
[2] Drupal: “Cloud.”

https://www.drupal.org/project/cloud

*42 Resource Quota: A setting that indicates the amount of resources
allocated to a container.

*43 Limit Range: A setting that determines minimum and maxi-
mum values with which to limit resource requests from a con-
tainer.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

