

Test Coverage Black-box Test OS Upgrade

©2017 NTT DOCOMO, INC.
Copies of articles may be reproduced only for per-
sonal, noncommercial use, provided that the name
NTT DOCOMO Technical Journal, the name(s) of the
author(s), the title and date of the article appear in the
copies.

NTT DOCOMO Technical Journal Vol. 18 No. 4 21

Application development accompanied by OS upgrades for
smartphones requires the use of many test items to detect bugs
that cannot be predicted solely on the basis of technical in-
formation released by the OS provider. This requirement
drives up costs in application development, so to keep costs
in check, we propose a method for extracting test items af-
fected by OS code differences between the old and new ver-
sions of the OS before and after an upgrade. In this method,
we first make an association between the application code
affected by the upgrade and the target test process and then
use test coverage information of affected application code
for each test item. This proposal was developed and imple-
mented in a tool through a joint-research partnership formed
with Systems Engineering Consultants Co., Ltd. in January
2015.

Communication Device Development Department Koichi Asano
Shinya Masuda

Mitsuhiro Ogata
Kazumasa Kobayashi

1. Introduction

In application development accompa-

nied by OS*1 upgrades for smartphones,

many test items must be used to deal with
bugs that cannot be predicted solely on

the basis of technical information re-

leased by the OS provider. This large
number of test items has become a fac-

tor in increasing the cost of application

development. In addition, the time pe-
riod from the announcement of an OS

upgrade to its market release tends to

be short, so it has become very difficult

to release an application supporting the
post-upgrade OS (hereinafter referred

to as “new OS”) soon after the release

of the new OS. Consequently, when
working to keep up with OS upgrades,

it is important that so-called upgrade

development that deals with new func-
tions provided by the new OS and chang-

es to Application Programming Inter-

face (API)*2 specifications be complet-
ed in a short time. This is essential to

maintaining market competitiveness.

The production process of coding/

compiling*3 in upgrade development
involves editing work such as the addi-

tion of source code (hereinafter referred

to as “code”) to support new functions
and the revision of code for existing func-

tions affected by the upgrade. This work

is performed based on technical infor-
mation/materials [1] released by the OS

provider and is followed by a testing pro-

cess that may begin after compiling.
At this time, actual execution of the

application under the new OS may still

*1 OS: Software for managing an entire system by
incorporating functions for basic management
and control of a device and basic functions used
in common by many software applications.

*2 API: A set of instructions, conventions, func-
tions, etc. for use during programming.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Efficient Application Testing for OS Upgrades

 22 NTT DOCOMO Technical Journal Vol. 18 No. 4

Execute test before upgrade
Get test coverage information

Step 1

(Black-box test)

(1) Total application test table

(2) Application
code

(3) Test coverage
information for
each test item

Test execution
(Manual work)

Get test
coverage

information

Old OS

New OS

(4) OS code
differences

(5) Application code
affected by OS

differences

Extract
differences

Extract
application code
affected by OS

differences

New test table for passing
OS-affected locations

(6) Application test table
(extracted version)

Extract effects on application code from OS code differencesStep 2

Perform a backward lookup against test coverage information
to extract test items for executing those parts of the application
code affected by OS differences

Step 3

Extract test items to
pass code affected by

differences

Figure 1 Extraction of test items affected by OS difference using test coverage information

uncover some bugs. One reason for this

is that changes to operation specifica-

tions that actually exist may not be in-
cluded in the technical information/ma-

terials. The fact is, totally unforeseen

bugs may suddenly appear. Consequently,
if the range of items targeted for testing

cannot be specified, that range will in-

evitably broaden. That is, the number
of test items subjected to a black-box

test*4 tends to increase, which has been

a factor in extending application devel-
opment time and increasing develop-

ment costs.

In this article, we focus on test items
subjected to black-box tests and pro-

pose a method for specifying the range

of testing and extracting test items. We

then describe the implementation of a

prototype system for AndroidTM*5 appli-

cations to assess the usefulness of the
method including its ability to reduce

the number of test items. Finally, we pre-

sent experimental results.
This proposal was developed and

implemented in a tool through a joint-

research partnership formed with Sys-
tems Engineering Consultants Co., Ltd.

in January 2015.

2. Proposed Method

In this research, Step 1 obtains test

coverage information [2] by associating
the total application test table with the

source code of the application (herein-

after referred to as “application code”).

Next, Step 2 compares the application

code with difference information between

the old and new versions of OS code to
extract all application code affected by

the OS upgrade. Finally, Step 3 propos-

es a method for associating the extract-
ed application code with the test process.

Here, the test process may be joint/in-

tegration testing in application devel-
opment or even acceptance testing per-

formed on the side ordering the appli-

cation development. The procedure for
creating an application test table (extract-

ed version) from the total application test

table using the proposed method (steps
1 - 3 above) is shown in Figure 1 and

explained below.

Google Inc. in the United States.

*3 Compiling: The process of converting source
code written in a programming language into an
executable form after attaching a header, check-
ing grammar, etc.

*4 Black-box test: An evaluation of a function
seen as a unit from the outside without regard

to its internal structure. Often used for joint test-
ing, integration testing, and acceptance testing.

*5 AndroidTM: A Linux-based open source plat-
form developed by Google Inc. in the United
States targeting mainly mobile information ter-
minals. A trademark or registered trademark of

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 18 No. 4 23

Table 1 Test coverage information for each test item (example)

Test item no. Source code Executed line number (test coverage information)

100 a.java 20

200 b.java 30

Table 2 OS code differences (example)

File name Before change (Ver. 5.0) After change (Ver. 6.0) Difference

ABC.java int ABC(a, b, c){ int ABC(a, b, c, d){ Add parameter

DEF.java g = defexec(); g = def2exec(); Change internal processing

Table 3 Application code (example)

File name Line no. Source code statement

a.java
10 int r = 0;

20 ret = DEF();

b.java 150 log(ABC(a, b, c));

Table 4 Application code affected by OS differences

File name Line no. Type Description

a.java 20 Warning Internal processing of called function DEF has changed

b.java 150 Fatal Number of parameters of API ABC has increased

2.1 Step 1: Get Test Coverage
Information

Prior to the OS upgrade, the total
application test table (Fig. 1 (1)) of the

implemented test process is associated

with the application code (Fig. 1 (2)).
This work of associating the two is per-

formed by the following procedure. First,

when running the application to exe-
cute the test items in the total applica-

tion test table, which lines of the appli-

cation code are actually ran are record-
ed in units of line numbers. The content

recorded here is called test coverage in-

formation for each test item (Fig. 1 (3)),
which can be represented as shown in

Table 1. It can be seen from this table

that test item number 100 is appropriate

when it is desired to run the 20th line of

source code a.java®*6.

2.2 Step 2: Extract Effects of
OS Differences

Extraction of differences between the
old and new versions of the OS code can

be represented as shown in Table 2. This

is called OS code differences (Fig. 1 (4)).
For example, it can be seen for OS code

DEF.java that API internal processing

changed after the upgrade, which means
that a difference in operation may occur

when called by the application. The ef-

fects of such OS differences on the ap-
plication can be extracted by compar-

ing OS code differences with the appli-

cation code. Given application code as

shown in Table 3, the application code

affected by OS differences (Fig. 1 (5))

can be represented as shown in Table 4.
It can be seen here that the OS upgrade

affects the 20th line of application code

a.java.

2.3 Step 3: Extract Test Items
The application test table (extracted

version) (Fig. 1 (6)) can be extracted by

comparing the application code affect-

ed by OS differences (Fig. 1 (5)) ex-
tracted in Step 2 with the test coverage

information for each test item (Fig. 1

(3)) recorded in Step 1. Table 5 is ob-
tained from Table 1 and Table 4. It can

be seen here that executing test item

number 100 from among the test items

and other countries. Company and product names
appearing in the text are trademarks or regis-
tered trademarks of each company.

*6 Java®: An object-oriented programming lan-
guage. Applications implemented in Java exe-
cute on a virtual machine, so they can operate
on different platforms. Oracle and Java are reg-
istered trademarks of Oracle Corporation, its
subsidiaries, and affiliates in the United States

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Efficient Application Testing for OS Upgrades

 24 NTT DOCOMO Technical Journal Vol. 18 No. 4

Table 5 Application test table

 (extracted version) (example)

Test item no.

100

Android terminal

Test target
Android application

Storage

(3) Application operation (execute test procedure)

JaCoCo

(4) Collect test coverage
information and store
in memory when
running application

Reset request

Dump request
(6) Dump test coverage
information into terminal
storage

(7) Transfer the
test coverage
information in
terminal storage
to the PC

Tester

Operations PC

Operations by tester

Operations via ADB

Processing by JaCoCo

(2) Reset intent notification

(5) Dump intent notification

Collect test coverage
information after reset and

dump to storage

Instrumentation Test application
for test target application

(1) Intent notification to initiate test application
(begin collection of test coverage)

Figure 2 Environment and procedure for acquiring test coverage information at test execution

in the total application test table is suf-

ficient for testing the application code

affected by the OS upgrade, and that
test item number 200 need not be exe-

cuted for this OS upgrade.

3. Implementation
Method

3.1 Acquisition Environment for
Test Coverage Information and
Information Formatting

1) Acquisition Environment
Test coverage information is obtained

using Java Code Coverage Library

(JaCoCo)*7 [3] incorporated in Android

Studio*8 [4]. This information can be
obtained at test execution time through

the Instrumentation Test*9 [5] in An-

droid Studio, but this requires a contin-
uous connection by Android Debug Bridge

(ADB)*10 [6] between the PC used for

operations during test execution and the
Android terminal. As a result, power will

still be supplied to the terminal when

executing test items that require a low
battery state thereby hindering the ex-

ecution of some test items. To resolve

this problem, we added a function to the
Instrumentation Test that enables re-

set*11 and dump*12 operations against test

coverage information whenever desired.

In this way, we were able to avoid con-

nection by ADB at test execution time.

The constructed environment and actu-
al procedure are shown in Figure 2. Be-

fore executing the test procedure, the test-

er performs a reset to delete test cover-
age information collected by JaCoCo.

Then, during execution of the test pro-

cedure, test coverage information is col-
lected by JaCoCo in memory and dumped

to storage later.

2) Formatting of Acquired Information
Test coverage information is ob-

tained as a list of application code exe-

cuted when executing test items. This
test coverage information for all test

items is then merged using application-

code line numbers as keys to obtain a

vent a mix-up with test coverage information
recorded for other test items.

*12 Dump: An operation that saves test coverage
information in storage. Used to record test cov-
erage information for each test item.

*7 JaCoCo: A library for obtaining test coverage
of Java source code.

*8 Android Studio: An integrated development
tool for Android applications.

*9 Instrumentation Test: A mechanism for per-
forming automatic testing of Android applica-

tions.
*10 ADB: A tool included in the Android SDK ca-

pable of executing shell commands, performing
file transfers, etc.

*11 Reset: An operation that deletes test coverage
information saved in storage. Performed to pre-

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 18 No. 4 25

OS source code
before upgrade

OS source code
after upgrade

Source code
build

Java class
files

Analysis of
class/method
dependencies

OS code
differences

Source code
build

Java class
files

Build: The work of converting source code into executable files using a Java compiler.

Comparison of method-
processing content and
parameter inheritance

relationships

List of
class/method
dependencies

List of
class/methods
with difference

Extraction of class/
methods affected by
class/methods with

differences

Figure 3 Flow of extracting OS code differences

Table 6 List of application code to be passed at time of test item execution (example)

Application code
Test item no.1 Test item no.2 … Test item no.X

Source file name Line no.

AAAAAA.java

10 ○ ○

20 ○ ○

100 ○

BBBBBB.java

5 ○ ○

15 ○ ○

25 ○

…

list of application code passed at the

time of test item execution (Table 6).

3.2 Procedures for Extracting OS
Code Differences and Application
Code Affected by Those Differences

Following the flow shown in Figure 3,

OS code differences are extracted from

OS source code before and after the OS

upgrade as a list of classes*13 and meth-

ods*14 affected by classes and methods
with differences.

Now, the portions of application code

using OS code differences (classes and
methods) are extracted to obtain a list

of application code affected by OS code

differences (Table 7).

3.3 Procedure for Extracting
Test Items Affected by OS
Code Differences

Finally, the lists obtained in Table 6
and Table 7 are merged with applica-

tion code numbers as keys to extract

*13 Class: Specified group of objects having simi-
lar states and behaviors in object-oriented pro-
gramming.

*14 Method: Behavior of objects in object-oriented
programming.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Efficient Application Testing for OS Upgrades

 26 NTT DOCOMO Technical Journal Vol. 18 No. 4

Table 7 List of application code affected by OS code differences (example)

Application code Level of
OS-difference effect

Description
Source file name Line no.

AAAAAA.java
10 3 Class implementation change in API return value

100 5 API parameter change

BBBBBB.java

15 4 API internal logic change

50 3 Constructor logic change

100 4 Addition of API throws specification

…

Table 8 List of test items affected by OS code differences (example)

Application code OS difference
effect?

Test item no.1 Test item no.2 … Test item no.X
Source file name Line no.

AAAAAA.java

10 Yes ○ ○

20 ○ ○

100 Yes ○

BBBBBB.java

5 ○ ○

15 Yes ○ ○

25 ○

…

those test items affected by OS code

differences (Table 8).

4. Experiment

We applied the procedure of this re-

search to various Android applications at
the time of the OS upgrade from 5.1.1

to 6.0.0 and measured whether the range

of testing was specified, and if so, the
extent to which the number of test items

to be executed were decreased.

4.1 Experiment Results
The results of extracting application

code and test items affected by OS code
differences using the procedure of this

research are listed in Table 9.

The test items extracted in this ex-

periment indicate that extraction can be
performed with equivalent accuracy as

existing methods and that testing range

can be specified by the proposed meth-
od without missing items that lead to

the detection of bugs. On the other hand,

results for two out of the four applica-
tions showed a reduction in number of

test items of zero while the other two

applications showed a reduction of 2 - 4
items (reduction effect of 2 - 4%). In

short, we were not able to obtain the

reduction effect in test range that we
originally expected.

This can be explained by noting that

source code lines for initialization pro-

cessing, screen-related base class pro-
cessing, etc. would be passed when ex-

ecuting any test item and that such lines

are affected by the OS. As a result, nearly
all test items came to be misjudged as

“affected by OS differences.”

4.2 Response to Issue
To resolve this issue, we assume

that the following relationships exist be-
tween application code and test items.

• Assumption 1: For a line of ap-

plication code passed when exe-
cuting many test items, only the

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 18 No. 4 27

Table 9 Experiment results

Application name
No. of lines of code No. of test items

Affected by
OS differences

Total
Affected by

OS differences
Total

Disaster Kit 1,676 7,964 28 28

Schedule & Memo 11,208 75,125 19 19

Hanashite Hon’yaku 8,548 41,844 165 169

Voice UI 1,025 4,323 47 49

Table 10 Overview of method for reducing test items (example)

Application code
Test item no.1 Test item no.2 Test item no.X

Source file name Line no.

AAAAAA.java

11 ○ ○

12 ○ ○

13 ○

BBBBBB.java

21 ○ ○

22 ○ ○

23 ○

…

Item reduction possible?
No

Must be executed based on
Assumption 2

No
Must be executed based on

Assumption 2

Yes
Can be executed by another

test item based on Assumption 1

Line of application code
executed by only one test item

Line of application code executed
by more than one test item

intended operation of that line

when executing one of those test

items need be verified.
• Assumption 2: For a line of ap-

plication code passed only when

executing a specific test item, the
intended operation of that line

when executing that test item

must be verified.

An abbreviated example of a proce-

dure based on the above assumptions for
reducing the number of test items that

must be executed is shown in Table 10.

A red frame marks a line of application

code executed by only one test item.

The results of applying this proce-
dure to the results of the above experi-

ment to reduce test items to only those

for which execution is absolutely nec-
essary are shown in Table 11. A red

frame encloses the number of test items

after this reduction process for each of
the applications in the experiment.

Examining these results, it can be

seen that the reduction rate for the
“Schedule & Memo” application having

a small number of test items overall is

low. However, a reduction effect greater

than 70% was obtained for each of the

other three applications, which indicates
that a sufficient effect was obtained in

making testing at the time of an OS up-

grade more efficient (by reducing the
number of test items to be executed).

Additionally, on comparing the results

obtained by executing test items manu-
ally with results obtained by the pro-

posed procedure, a test item for which

bugs were discovered under manual
execution was found to be absent in the

set of test items after reduction. While

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Efficient Application Testing for OS Upgrades

 28 NTT DOCOMO Technical Journal Vol. 18 No. 4

Table 11 Experiment results after item reduction

Application name
No. of test items

Reduction rate No. of items requiring
execution

Affected by
OS differences

Total

Disaster Kit 18 126 126 85.7 %

Schedule & Memo 16 19 19 15.8 %

Hanashite Hon’yaku 45 165 169 73.4 %

Voice UI 6 47 49 87.8 %

Table 12 Number of untested lines of application code affected by OS upgrade

Application name

No. of lines of code

Affected by OS differences
Total

Untested Tested

Disaster Kit 790 886 7,964

Schedule & Memo 8,075 3,133 75,125

Hanashite Hon’yaku 5,503 3,045 41,844

Voice UI 0 1,025 4,323

the effect on testing quality of a reduced

number of test items based on assump-

tions 1 and 2 has not yet been studied,
application of the proposed procedure

to the above four Android applications

showed that the number of test items to
be executed could be reduced while main-

taining testing quality.

4.3 Future Outlook
On extracting a list of test items af-

fected by OS code differences (Table 8),
it became clear that application code that

had not been tested before by existing

methods despite being affected by an
OS upgrade could also be extracted. The

results of extracting untested applica-

tion code from the results obtained in the
above experiment are listed in Table 12.

A red frame encloses the number of lines

of untested application code despite

being affected by OS differences for

each of the Android applications in this
experiment. Application of this method

can detect a deficiency of test items in

other applications too.
For the OS upgrade targeted by this

experiment, no defects were released

into the market even though we reduced
the number of test items using the pro-

posed method. However, with an eye to

future OS upgrades, we plan to go in a
direction somewhat opposite to test-item

reduction and to add testing that would

check an application for any room for
making improvements to software qual-

ity.

5. Conclusion

This article proposed a method for

extracting test items for applications

affected by an OS upgrade and showed

that application testing became more
efficient when validating application op-

eration with a prototype system incor-

porating that method.
Going forward, we plan to use the

proposed method on the release of new

OSs and apply it to more applications
with the aim of decreasing the number

of test items and preventing omissions

in creating new items. We also plan to
study ways of implementing the meth-

od for correct operation in many cases

including automatic testing and thereby
broaden the scope of its use.

REFERENCES
[1] Android Developers website.

https://developer.android.com/index.html
[2] K. Yasuda: “Concept and Practice of

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 18 No. 4 29

Software Quality Assurance—Systematic
Approach toward the Open Era—,”
JUSE Press, Ltd., 1995 (in Japanese).

[3] EclEmma: “JaCoCo Java Code Cover-
age Library.”
http://www.eclemma.org/jacoco/

[4] Android Studio: “Android Studio Over-
view.”
https://developer.android.com/studio/
intro/index.html

[5] Android Studio: “Test Your App.”
https://developer.android.com/studio/

test/index.html
[6] Android Studio: “Android Debug Bridge.”

https://developer.android.com/studio/
command-line/adb.html

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

