
Device Connect WebAPI

©2015 NTT DOCOMO, INC.
Copies of articles may be reproduced only for per-
sonal, noncommercial use, provided that the name
NTT DOCOMO Technical Journal, the name(s) of the
author(s), the title and date of the article appear in the
copies.

WebAPI StandardizationIoT

4 NTT DOCOMO Technical Journal Vol. 17 No. 1

A variety of devices able to connect with smartphones have

entered the market recently. However, the development envi-

ronments for each product are different, and developing con-

tent for each OS environment and individual device is be-

coming an issue. With device specifications dependent on

communication protocols such as Bluetooth®*1, affinity for

Web services is also low. As such, we have developed a Web

interface technology that operates on smartphones and has

strong generality and extensibility. This article describes de-

velopment of this technology and efforts toward standard-

ization.

Service Innovation Department Takafumi Yamazoe
Hiroaki Hagino

1. Introduction

A variety of devices, such as wrist bands

and cameras, that are able to connect with

smartphones and exchange information or

control them have entered the market.

However, in order to develop ser-

vices using these devices, original, man-

ufacturer-specific specifications must be

supported, which can create difficulty.

Standardization of wearable and health-

care devices is advancing, but it is lim-

ited in scope, and usually there is no

compatibility between specifications.

Because of this, implementations specific

to individual devices and standards are

needed when developing a service using

a variety of devices.

One way to implement content that

is not dependent on the environment is

the Web application (Web content that

operates as an application within a Web

browser). As part of the standardization

of HTML5*2 at the World Wide Web

Consortium (W3C)*3, Application Pro-

gramming Interfaces (APIs)*4 are being

consolidated to use devices from Web

applications. However, they assume the

commoditization of functions and devices,

so while they are generic and general

purpose, they do not allow the specialized

functions provided by individual devices,

which differentiate them from each other,

to be used. Even hybrid applications,

which enable Web applications to operate

like native applications, are limited in

that they are dependent on the state of

device support in the existing framework.

Even with hybrid applications, if the

user has multiple applications that use

varions devises installed on the same

terminal, each application will have to

have dedicated functions to access the

devices. As with native applications, this

issue has still not been resolved.

As such, NTT DOCOMO has devel-

oped the Device Connect WebAPI, com-

bining standard Web technologies and

*1 Bluetooth®: A short-range wireless communi-
cation specification for wireless connection of
mobile terminals, notebook computers, PDAs
and other portable terminals. Bluetooth is a reg-
istered trademark of Bluetooth SIG Inc. in the
United States.

*2 HTML5: An enhanced version of HTML for-
mulated by WHATWG and W3C (see*3).

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 17 No. 1 5

Smartphone OS

Hybrid application

Web application
(HTML5+JavaScript)

WebView

Framework

Libraries

Kernel

Device

Native
application

Any function
can be used,
just like a native
application

Any function can
be used

Figure 1 Using a device from a native or hybrid application

Smartphone OS

Web site on the Internet

Web browser

Framework

Libraries

Kernel

Device

Web application
(HTML5+JavaScript)

Web application
(HTML5+JavaScript)

Web application
(HTML5+JavaScript)

Usable functions
depend on theWeb
browser specifica-
tions

Only device APIs
specified in HTML5

Figure 2 Using a device from a general Web application (Web browser)

general smartphone functions to create

a mechanism that enables any content or

service, whether native or Web applica-

tion, to use any device by accessing the

WebAPI. This article describes the fea-

tures of the Device Connect WebAPI

and related initiatives.

2. Features and Mechanism

The main features of the Device

Connect WebAPI are a common method

for device access, device abstraction

through functions, and strong generality

and extensibility.

2.1 Common Method for

Device Access

Ordinary native applications (appli-

cations downloaded from an applica-

tion store for the OS and running on a

smartphone) access devices using meth-

ods provided by the OS, as shown in

Figure 1. This enables any function to

be implemented, but also requires appli-

cations to be implemented for each OS,

and each device. Also, accessing devices

from a Web application depends on func-

tions provided by the Web browser, as

shown in Figure 2. Currently, even

though W3C has standardized APIs for

accessing basic devices, only some of the

functions have been implemented in Web

browsers on smartphones. In contrast to

this, the Device Connect WebAPI runs as

a virtual server on the smartphone and

provides a WebAPI to access devices

freely, even from a Web browser, so that

devices can be used from Web applica-

tions. Specifically, access to devices is

provided by the following procedure, as

shown in Figure 3.

(1) The Web application sends a

request for device access to the

WebAPI on the virtual server

through the internal IP network

on the smartphone.

(2) The virtual server receives the

device access request, and con-

verts it to a control command

for the OS and individual device.

Generally, WebAPIs are used through

an IP network, so the Device Connect

WebAPI can be accessed from either

native or Web applications. Also, it is

not dependent on the OS development

*3 W3C: An international organization that promotes
the standardization of technologies used on the
WWW.

*4 API: General-purpose interfaces for using func-
tions and data.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Device Connect WebAPI

 6 NTT DOCOMO Technical Journal Vol. 17 No. 1

Select device

Specify light API Specify color
Radio-controlled ball

Smart Light

Specify light API Specify color
“Turn on the light” oper-
ation implemented with
the same code

Figure 4 Example of operation from a Web browser

Android OS

Framework

Library

Kernel

Device

Device Connect WebAPI
(native application)

Virtual server

IP network
layer

Web browser

Web site on the Internet

Web application
(HTML5+JavaScript)

Web application
(HTML5+JavaScript)

Web application
(HTML5+JavaScript)

Extension plug-in C
Extension plug-in B

Extension plug-in A

Access to virtual
server through IP
network

Any function can
be used as a na-
tive application

Device access re-
quests are converted
to control commands
for each device (plug-
in extension)

Figure 3 Using a device from the Device Connect WebAPI (Android OS example)

environment, run-time environment or

device being connected to, and general-

purpose Web or native application imple-

mentations can be used.

2.2 Device Abstraction by

Function

The Device Connect WebAPI ab-

stracts individual devices, with original

functions specified by each manufactur-

er, using the set of functions provided by

each device. For example, devices with

a function to turn on a light, whether a

light switch, a camera, or a toy, all per-

form a common operation with a com-

mon code description such as “turn on

the light.” Figure 4 shows an example

of controlling devices with different pur-

poses in similar ways from a Web browser.

2.3 Strong Generality and

Extensibility

The Device Connect WebAPI is com-

posed of the core, which operates as a

virtual server, and plug-ins, which con-

nect to and control devices, as shown in

Figure 5.

As described in section 2.1, the core

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 17 No. 1 7

Core (virtual server)

Plug-in for device 1

Application supporting the
Device Connect WebAPI

Library for Device 1

Device 1

Accelerometer Screen

Accelerometer Screen Notifications

Plug-in for device 2

Library for Device 2

Device 2

Accelerometer Screen Notifications Sonar

Accelerometer Screen Notifications

Sonar

Sonar

Plug-in search

Security

Plug-in SDK Plug-in SDK

Vibration

Device Connect WebAPI

Standard functions
specified in SDK

Standard functions for
which a device is not
present are implemented
by combining device
functions

Non-standard
functions are

specified in a plug-in
and used

↓
Any functional

extension is possible

Special, device-
specific functions
are also supported
(e.g.: sonar)

Core includes only system-
management functions (plug-
in search, security, etc.)

Notifications
(combination of screen and vibration)

Figure 5 Device Connect WebAPI architecture

relays API requests received through the

IP network to the plug-ins. As such, the

core does not have any real functionality

besides system administration, and does

not have individual API specifications.

Conversely, the plug-ins have the

actual functions for accessing the device,

and provide API specifications for using

the various functions of the device.

Since the core does not implement

any functionality or specify APIs, any

new device can be supported by adding

a new plug-in. For the convenience of

developers, general and generic functions

are pre-defined in the API specifications,

but any additional APIs can be defined

in the plug-in, so that special and unique

functionality in each device can be used.

This enables the Device Connect WebAPI

to achieve strong generality and exten-

sibility.

3. Security Measures

The Device Connect WebAPI is de-

signed to extend functionality, allowing

access to various device functions from

the smartphone OS or Web browser, so

ensuring security is an issue (Figure 6).

As such, it implements various

measures to protect against malicious

applications, interception, tampering or

impersonation (spoofing) of the virtual

server.

3.1 User Consent for Use of

Functions by Services

When a user installs a native appli-

cation on a smartphone OS, the user is

presented with a screen to authorize the

application to use certain functions, to

prevent the application from behaving

in ways unintended by the user. However,

applications using the Device Connect

WebAPI are installed separately from the

Device Connect WebAPI, and the func-

tions are used through the IP network,

so the confirmation screen cannot be dis-

played for the Device Connect WebAPI,

which has already received permission

to use the functions.

Thus, to prevent unintended access

to functions, the Device Connect WebAPI

virtual server uses OAuth authentica-

tion*5, which is a security model used

widely on the Internet. When a service

first accesses the virtual server, it checks

a list of functions that it will use with the

user, preventing access to functions not

intended by the user, as with conventional

applications.

*5 OAuth authentication: A standard method
for certifying secure APIs used in Web services
and other applications.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

Device Connect WebAPI

 8 NTT DOCOMO Technical Journal Vol. 17 No. 1

Web
server

Virtual
server

Plug-in

Web browser

Web
application

AppID

AppID

Content developer Plug-in developersApplication provider

Application
store

Malicious application

Malicious plug-in

Interception, falsification

Interception, falsification

Interception, falsification

Server impersonation

Server impersonation

Application name
falsification

Reliable channel

Unreliable channel

Intent/Intent URL scheme

HTTP communication

AppID Reliable unique ID

Content
impersonation

Figure 6 Security measure perspective

3.2 Interception or Falsification

of Communication

Since the application and virtual

server communicate through the IP net-

work, there is a risk of interception or fal-

sification. Ideally, communication should

be encrypted using Secure Sockets Layer

(SSL)*6 or other means, but the virtual

server is installed and used on the

smartphone, so encryption key infor-

mation cannot be protected from reverse

engineering*7, and dynamically generat-

ed keys cannot be used from the Web

browser. Thus, for our smartphone se-

curity model, we verified the secrecy of

HTTP*8 communication, and confirmed

that various information regarding HTTP

communication within the terminal can-

not be obtained without having root per-

missions.

Communication outside the terminal,

which requires a separate mechanism for

secrecy, is designed to be handled by

plug-ins, so it is outside of the scope of

the Device Connect WebAPI. Plug-ins

operate as ordinary native applications,

so they are able to use dynamically gen-

erated key information, unlike the Web

browser, and they can be used for en-

crypting communication outside of the

terminal. For information passed between

the virtual Web server core and plug-ins,

security can be preserved by various se-

curity models provided by the smartphone

OS.

3.3 Impersonation of

Virtual Servers

Virtual servers are implemented as

ordinary native applications, so the pos-

sibility of an application terminating the

virtual server and then impersonating the

virtual server must be handled.

Thus, in addition to monitoring the

state of the virtual server, the virtual serv-

er is explicitly launched from the Web lay-

er, and during processing, an Intent*9

URL scheme is used as a mechanism to

protect against impersonation. This is the

mechanism that enables native applica-

tions to be launched from the standard

*9 Intent: A mechanism provided by the Android
OS for programs to exchange parameters. Used
between components within an application and
between applications to exchange information.

*6 SSL: A protocol for encrypted communications.
*7 Reverse engineering: A process of analyzing

the configuration and operation of software or
hardware to clarity manufacturing methods and
operating principles.

*8 HTTP: A communications protocol used to send
and receive HTML and other content between
Web browsers and Web servers.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

 NTT DOCOMO Technical Journal Vol. 17 No. 1 9

Android™*10 Web browser, by specifying

a package name*11, allowing information

to be passed explicitly from the Web layer

to the native application layer. However,

the opposite, passing information from

the native application layer to the Web

layer, is not possible. Information veri-

fying that impersonation is not occurring

is sent as a parameter to the native appli-

cation layer the first time only, and for

all subsequent interaction, information

proving that it is not fake is exchanged

in the Web layer only in order to detect

any impersonation.

3.4 Malicious Plug-ins

Plug-ins contain the implementations

of functions, and can be considered the

same as ordinary native applications.

Thus, using the smartphone security

model, it is possible to check whether a

malicious application is using functions

not intended when the plug-in is installed

or on the settings screen.

4. Initiatives for
Development of the
Device Connect WebAPI

The source code for the overall archi-

tecture of Device Connect WebAPI, in-

cluding a virtual server implementation,

has already been published on GitHub*12

as open source software [1]. A Web in-

terface specification as a REpresenta-

tional State Transfer (REST) API*13, as

well as Software Development Kits

(SDK)*14 for Android, iOS*15, and Ja-

vaScript*16 environments to make con-

tent development easier, and SDKs for

Android and iOS plug-in development

are provided.

As described in section 2, many fea-

tures of the Device Connect WebAPI,

such as generality through a Web inter-

face and extensibility through plug-ins,

are based on the architecture. Standard-

ization of device access has been done

with various goals in the past, but they

have focused on building a closed model

with vertically-integrated protocol stack,

or conversely, specified only a limited

part of the communication protocol. Very

little effort has emphasized generality

and extensibility of the architecture. For

example, in setting near-field communi-

cation protocols, several organizations

have their own specifications, as a means

of creating exclusive lock-in, but they

effectively lose any compatibility be-

tween devices, and reduce convenience

for users.

On the other hand, by not specifying

the protocol stack there is no lock-in

with the Device Connect WebAPI, and

by using a Web interface that abstracts

functionality, the architecture emphasizes

incorporation of other specifications. Thus,

even with a flood of different specifica-

tions, it can be used as an interface for

integrating all of them. NTT DOCOMO

has already contributed the Device Con-

nect WebAPI specification to the Open

Mobile Alliance (OMA)*17 Generic open

terminal API (GotAPI)*18 specification,

and it will be released as a standard in

March 2015.

5. Conclusion

We have developed the Device Con-

nect WebAPI as an architecture enabling

use of all functions of a variety of devices

linked to smartphones from content. The

technology developed has been released

as open source software on GitHub using

the MIT license*19, and is being stand-

ardized at OMA as GotAPI. Publishing

details of the technology contributes to

expanding its use and improving security,

and will promote use in a variety of

content and support for more devices.

REFERENCE
[1] GitHub: “Device Connect.”

https://github.com/DeviceConnect

and other countries.
*17 OMA: An organization that promotes standard-

ization of mobile-related applications.
*18 GotAPI: A general-purpose Web interface

specified by the OMA and based on a study of
the DeviceConnect WebAPI implementation.

*19 MIT License: A software license providing no
guarantee, but permitting unlimited use, free of
charge, by just adding the license descriptor.

*10 Android™: A software platform for smartphones
and tablets consisting of an operating system,
middleware and major applications. A trademark
or registered trademark of Google Inc., in the
United States.

*11 Package name: Information identifying an ap-
plication. Uniqueness is guaranteed by smartphone
application stores.

*12 GitHub: A sharing Web service for software
development projects.

*13 REST API: A style of software architecture used
on the Web.

*14 SDK: A tool or set of tools used for software
development.

*15 iOS: A trademark or registered trademark of
Cisco Corp. in the U.S.A. and other countries.

*16 JavaScript: A script language appropriate for
use in Web browsers. JavaScript is a registered
trademark or trademark of Oracle Corporation,
its subsidiaries and affiliates in the United States

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

