
1.	 Introduction

Intuitive operations based on the

touch panel have been well received in

recent years and the use of smartphones

has been growing explosively as a result.

This trend has been accompanied by

larger displays and higher resolutions as

well as larger terminal enclosures. How-

ever, larger devices can effect the ease of

holding a terminal and performing op-

erations, and as a result, one-handed

operation has become more difficult as

certain points on the screen become

more difficult to reach and touch. Nev-

ertheless, there are many scenarios in

which one-handed operation is unavoid-

able, such as when standing in a

crowded train, carrying many personal

belongings, and holding a child’s hand.

Having to perform such one-handed op-

erations is increasingly causing users to

drop their terminals or touch the wrong

functions on the screen, and this is mak-

ing users increasingly dissatisfied with

smartphone operations (Figure 1 (a)).

Of course, downsizing the terminal

could dispel this dissatisfaction, but the

advantage of enjoying data-intensive

content on a large screen would be lost.

Various methods have been tried to re-

solve this issue such as improving the

User Interface (UI) by rearranging but-

tons or adjusting touch operations for

one-handed operation or by incorporat-

ing motion-based operations such as

shaking the terminal. These methods,

however, have not been able to suffi-

ciently improve usability for various

reasons such as limitations caused by the

range of finger motion or crowded con-

ditions and the need for compatibility

with two-handed operation. There have

also been studies on changing the way

functions are initiated according to the

way in which the terminal is being held

[1] [2], but they have not led to improve-

ments in one-handed operation.

Against the above background, we

have focused our attention on the com-

monplace action of “holding (gripping)

©2014 NTT DOCOMO, INC.
Copies of articles may be reproduced only for per-
sonal, noncommercial use, provided that the name
NTT DOCOMO Technical Journal, the name(s) of the
author(s), the title and date of the article appear in the
copies.

†	 Currently, Research Laboratories

Grip Feature UI Smartphone

User Interface Using Natural Gripping Features
—Grip UI—

The popularity of touch panels as a UI has led to larger
screens and terminals in recent years, but cases in which
such larger devices are felt to actually hinder operability
are on the increase. Focusing on the commonplace action
of “holding a smartphone,” we have developed a proto-
type UI that recognizes each user’s natural way of
gripping a terminal and makes one-handed operation
easier to perform. This article describes the basic concept
of this novel UI and its implementation in a prototype
terminal.

Communication Device Development Department Masakatsu Tsukamoto

Yuta Higuchi

Takashi Okada

†

NTT DOCOMO Technical Journal Vol. 15 No. 3 17

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

ノート
The popularity of touch panels as a UI has led to larger screens and terminals in recent years, but cases in which such larger devices are felt to actually hinder operability are on the increase. Focusing on the commonplace action of “holding a smartphone,” we have developed a prototype UI that recognizes each user’s natural way of gripping a terminal and makes one-handed operation easier to perform. This article describes the basic concept of this novel UI and its implementation in a prototype terminal.

a smartphone” and have developed a UI

that can recognize each user’s way of

gripping a terminal (grip features) so

that gripping can be used to operate a

terminal (Fig. 1 (b)). This novel UI im-

proves one-handed operation without

having to change the way in which a ter-

minal is held or to worry about crowded

conditions.

In this article, we define the grip fea-

tures used by this UI (hereinafter

referred to as “Grip UI”), present re-

quirements for terminal implementation,

and describe the technical issues that

must be addressed to satisfy those re-

quirements and the techniques for

resolving them. We also introduce a pro-

totype terminal that we developed as an

example of achieving a Grip UI.

2.	 Grip UI Requirements
and Specifications

2.1	 Definition of Grip Features
To exploit grip features as a UI, we

need to quantify the state of gripping a

terminal. Thus, at the beginning of this

development project, we decided to de-

fine grip features that we deemed

necessary for detecting the state of grip-

ping. Grip features, however, are

dynamic in nature, and we studied them

knowing that they are not uniform across

all individuals.

In detecting a state of gripping, it is

necessary to determine “which parts” of

the terminal are being gripped and “how

intensely” those parts are being gripped.

Among these, grip intensity can be de-

tected on the basis of “pressure intensity.”

However, detecting which parts are

being gripped is more problematic as

that depends on the shape of the terminal

and individual skeletal features. Further-

more, considering that force is not

applied uniformly to the terminal, it is

difficult to accurately detect which parts

are being gripped solely on the basis of

a “contact area” index. It is therefore im-

portant that pressure bias be obtained in

a more detailed manner through a “pres-

sure distribution.” It must also be kept in

mind that a terminal is usually being

held by the user, and to therefore deter-

mine under what conditions the terminal

is being gripped, “pressure time transi-

tion” also becomes a necessary feature

in using a Grip UI.

For the above reasons, we define

grip features in terms of the three feature

quantities listed below (Figure 2).

(1) pressure intensity

(2) pressure distribution

(3) pressure time transition

(1)	The “pressure intensity” feature is

needed to determine differences in

the pressure applied to the smart-

phone to judge whether force is

being applied intentionally when

holding the smartphone.

(2)	As the name implies, the “pressure

distribution” feature is needed to ob-

tain the distribution of pressure on

the terminal. The points at which

pressure is being applied depends on

individual characteristics such as

Holding on to a train strap Carrying many belongings

“Grip-based actions” can expand one-handed operation!

With Grip UI:

(a)

Figure 1 Use cases

Times when one-handed operation is necessary…

(b)

I want to press
“Return,” but I
can’t reach it…

But if I grip the
smartphone,

the screen
returns!

18 NTT DOCOMO Technical Journal Vol. 15 No. 3

User Interface Using Natural Gripping Features—Grip UI—
N

TT
 D

O
C

O
M

O
 T

ec
hn

ic
al

 J
ou

rn
al

*1	 3rd Party: A software vendor that develops soft-
ware for UE.

hand size, shape and thickness. Ob-

taining the pressure distribution on

the terminal can therefore absorb in-

dividual differences.

(3)	The “pressure time transition” feature

is needed to obtain temporal varia-

tion in detected pressure. “Gripping”

is a dynamic action, and even the

order of fingers used to apply pres-

sure differs between individuals. In

addition, assessing the temporal con-

tinuity in pressure detection makes it

possible to judge whether that pres-

sure is intentional or accidental.

We consider that defining the above

three feature quantities will enable us to

obtain the information needed to achieve

a Grip UI.

2.2	 Terminal Implementation
Requirements

The Grip UI is a function for per-

forming terminal operations according to

detected grip features. The requirements

listed in Table 1 must be satisfied for

terminal implementation of Grip UI.

Items 1 and 2 in the table are re-

quirements concerned with hardware.

Development of Grip UI began with the

aim of improving user friendliness as-

suming the use of smartphones, which

means that the size of the terminal enclo-

sure must not change to the point of

changing the user’s sense of terminal

manipulation. At the same time, sensors

that can obtain the three feature quanti-

ties defined in section 2.1 regardless of

user attributes (age, gender, physique,

etc.) must be implementable without af-

fecting terminal shape.

Items 3 to 5 in the table are require-

ments concerned with software. Although

Grip UI is to be implanted in terminals

as a new type of UI, the conditions under

which it can be useful differ from those

of existing UIs, and for this reason, it

should be used in parallel with existing

UIs such as touch panels and hard key-

boards. In other words, Grip UI must be

able to coexist with existing UIs. Fur-

thermore, as a UI is a function related to

all applications, a framework supporting

Grip UI must be prepared in such a way

that applications do not have to be mod-

ified and the extendibility of existing

applications and 3rd Party*1 applications

can be guaranteed. Additionally, as grip

features themselves are physical quanti-

ties obtained by sensors, there is no

reason to believe that they cannot be

beneficially used for other applications

in addition to terminal operations. This

kind of implementation that can ensure

Table 1 Performance requirements of Grip UI

No. Item Performance requirement

1

Hardware

Grip features must be obtainable regardless of user attributes
(age, gender, physique, etc.)

2
Must not be larger than existing terminals to the point of
changing the way a terminal is held.

3

Software

Must not conflict with existing UIs such as touch panels.

4 Must be usable without having to modify applications.

5
Detected grip features must be applicable to other than ter-
minal operations.

6

Usability

It must be possible to register and use each individual’s style
of gripping.

7 It must be easy to register a gripping style.

8 Users must be able to sense execution by Grip UI.

9
Users must not feel that response time is slower than that of
existing UIs.

10 Basic performance of existing terminals must not be lost.

1

5

２

3

4

Figure 2 Requirements for detecting a gripping state

(2)Pressure distribution(1)Pressure intensity (3)Pressure time transition

NTT DOCOMO Technical Journal Vol. 15 No. 3 19

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

*2	 Array: The arranging of sensor elements in an
array-shape configuration.

*3	 Android™: An open source platform targeted
mainly at mobile terminals and promoted by
Google Inc., in the United States. Android™ is a
trademark or registered trademark of Google Inc.

in the United States.
*4	 SensorManager: A class used in Android ap-

plication development. It is called when using
device-mounted sensors to obtain output values
and perform other sensor-related functions.

*5	 Application framework: An architecture for
configuring Android OS consisting of component
groups required for implementing standard func-
tions in Android applications.

such extendibility is desirable.

Items 6 to 10 are requirements con-

cerned with using Grip UI to perform

terminal functions. Items 6 and 7 are re-

quirements for making new functions

easier to use while items 8 and 9 are re-

quirements for providing users with a

compelling and enjoyable interface

experience.

Finally, item 10 is a requirement that

can be treated as a precondition to satis-

fying items 1 to 9. Given that the

purpose of this development project is to

improve the basic performance of the

terminal (UI), ensuring that no function-

ality is lost as a tradeoff is an important

study item.

3.	 Grip UI Functional
Implementation

3.1	 Optimization of Tactile Sensors
In this development, we decided to

use a tactile sensor [3]–[5] capable of

multipoint pressure measurements with

the aim of efficiently detecting “pressure

intensity” and “pressure distribution”

from among the grip features described

in section 2.1. Specifically, to achieve an

effective multipoint measurement sys-

tem, we used a tactile sensor that

configures pressure sensor elements in

an array*2 shape.

A key characteristic of the tactile

sensor used here is that making the area

of a single pressure sensor element

larger enables a lower pressure intensity

to be detected and a high-sensitivity

implementation to be achieved. On the

other hand, it is desirable that the area of

a single pressure sensor element in an

array be small to obtain a detailed under-

standing of pressure distribution. With

the above in mind, we worked on opti-

mizing the size and the array of the

pressure sensor elements making up the

tactile sensor (Figure 3). Since one re-

quirement in this development is that

Grip UI is not to influence terminal

shape, we decided to adopt a sheet-

shaped tactile sensor. This approach

satisfies the hardware requirements pre-

sented in section 2.2.

To optimize an actual arrangement,

we performed evaluation experiments

repeatedly on prototype devices using

the individual size, number and location

of pressure sensor elements making up

the tactile sensor as parameters. These

experiments revealed that an increase in

elements increased the load applied to

the A/D converters and control ICs

needed for obtaining sensor information.

One measure commonly used to reduce

current consumption is to lengthen the

sensing interval, but in this optimization,

we also had to ensure that the “pressure

time transition” feature described in sec-

tion 2.1 could also be sufficiently

detected.

3.2	 Coexistence with Existing UIs
On incorporating a new sensor, it

must be interconnected with An-

droid™*3 OS without affecting existing

functions. Since a new UI is imple-

mented through interrupt processing on

Android OS, placing the new sensor on

the same level as existing UI devices

may generate competition and degrade

usability.

To resolve this issue, we used a basic

framework for sensor addition prepared

by Android OS as shown in Figure 4.

Specifically, we added a tactile-sensor

interface in the extension area provided

as standard in the SensorManager*4

block implemented in the application

framework*5. Thus, from the viewpoint

of Android OS, the new sensor took on a

form equivalent to that of an accelera-

Figure 3 Sensor size versus sensor characteristics

Area of single sensor element LargeSmall

N
o.

 o
f s

en
so

r e
le

m
en

ts

M
in

im
um

 p
re

ss
ur

e
se

ns
iti

vi
ty

Optimized
through testing

Toward finer detection of
pressure distribution

Toward finer detection
of pressure FewLow

ManyHigh

20 NTT DOCOMO Technical Journal Vol. 15 No. 3

User Interface Using Natural Gripping Features—Grip UI—
N

TT
 D

O
C

O
M

O
 T

ec
hn

ic
al

 J
ou

rn
al

*6	 Acceleration sensor: A sensor that measures
changes in speed. Equipping a mobile terminal
with an accelerometer allows it to sense orienta-
tion and motion.

*7	 Service: An element making up an application.
A function running invisibly in the background.

*8	 Event: A notification sent to a program whenever
some type of action has occurred such as a button
operation.

*9	 EventListener: A method called within a pro-
gram when its corresponding event occurs.

*10	Intent: A mechanism provided by the Android OS
for programs to exchange parameters. Used be-
tween components within an application and
between applications to exchange information.

tion sensor*6, for example. That is to

say, we implemented the new sensor as

one belonging to the same class of cur-

rently installed sensors and made it

independent of existing UI functions on

the layers below the application frame-

work thereby avoiding any conflict as a

UI device. This also made it possible to

use the new sensor itself from the ap-

plication software layer while also

ensuring extendibility of the new sensor

to uses other than terminal operation as

in the development of novel applications

using grip features.

3.3	 UI Integration
As described in section 3.2, tactile-

sensor information comes up through

SensorManager in Android OS, so a con-

nection between the application and

SensorManager must be made to achieve

a UI function.

In this development, we achieve this

function by incorporating a special

Service*7 between the sensor and

application to perform conversion pro-

cessing to a UI event provided in the

Android standard. This enables input to

an application based on Grip UI and

input based on the existing UI to be han-

dled as a UI event on the same level and

to be used without having to modify any

application.

A conceptual image of this function

is shown in Figure 5 in comparison

with the existing technique. In the con-

ventional configuration shown on the

left in the figure, Event*8B sent from the

new interface needs to be received, so a

corresponding EventListener*9B must be

added to the existing application. How-

ever, in the new development shown on

the right, a newly added UI swap service

determines how the user is gripping the

terminal from tactile-sensor values and

converts that information to a command

for starting up an appropriate function.

This swap service can also support UI

events such as a KeyEvent reflecting the

pressing of a particular key or the issu-

ing of an intent*10 to a particular

application. These event-issuing func-

tions can be used, for example, to start

up an application or perform a simple

application operation.

4.	 Prototype Test Results

4.1	 Grip UI-equipped Mobile
Terminal

An external view of our prototype

terminal equipped with the Grip UI

function is shown in Figure 6. The tac-

Figure 4 Platform architecture

Tactile sensor driver

Tactile sensorHardware

Application

SensorManager

Existing sensor driver

Existing sensor

Tactile-sensor
interface

Added extension
Extension area

Android OS

Linux®: A registered trademark or trademark of Linus Torvalds in the United States and other countries.

Application
software

Application
framework

Standard library
Linux® kernel

New implemen-
tation section

Figure 5 UI swap service

Existing application

Function (Activity)

Existing application

Function (Activity)

Existing interface New interface Existing interface New interface

Event
Listener A

Event
Listener A

Event
Listener B

Event
Listener B

Event A Event B
Newly established event

UI swap service

Conventional Grip UI

Modified

Modified for each application;
new EventListener installed

Application
framework

Application
software

Application
framework

Application
software

Event A

Event A

Event B

No modification needed
for each application

Conversion to
existing Event

NTT DOCOMO Technical Journal Vol. 15 No. 3 21

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

tile sensor is arranged on both sides of

the terminal and on the upper part of the

backside. As shown in Table 2, the size

of this terminal is essentially the same as

the base terminal (it is less than 1 mm

larger), but we expect this increase in

size to be sufficiently absorbed at the

commercial stage.

Examples of obtaining grip features

from this prototype terminal are shown

in Figure 7. In this way, we were able

to confirm that an optimal arrangement

of tactile sensor elements can achieve a

terminal that enables the grip features

described in section 2.1 to be obtained.

4.2 Grip UI Application
To achieve a Grip UI, we carried out

the implementation described in sections

3.2 and 3.3 and installed the following

functions to satisfy the usability require-

ments listed in Table 1.

• Start-up/terminate UI swap service

• Register UI swap map

• Register grip template

• Change tactile sensor parameters

Examples of setting screens for vari-

ous functions are shown in Figure 8. To

begin with, the UI-swap-map registra-

tion function in the upper part of the

figure enables the user to register and

edit a correspondence between a grip-

based input and a UI event that the user

would like to be issued. Here, the user

may simply select a previously prepared

item from the displayed list to begin

using the corresponding grip pattern im-

mediately. The user may also select

gripping style and issuing event as de-

sired, that is, the user may customize the

correspondence between grip-based

input and a UI event. Next, the grip

template registration function shown in

the lower part of the figure enables the

user to register and edit a grip template

for the purpose of classifying a grip-

based input according to a registered

pattern. Here, major ways of gripping

have been registered beforehand to sim-

Table 2 Prototype dimensions and comparison with base terminal

Prototype terminal Base terminal comparison

Height 129.5 [mm] + 0.5 [mm]

Width 65.6 [mm] + 0.6 [mm]

Thickness 10.4 [mm] ± 0.0 [mm]

Figure 6 External view of prototype terminal

(a)Prototype surface (b)Prototype backside (c)Grip feature range

Grip feature
section

Figure 7 Examples of obtaining grip features

(c)Center gripping (d)Upper gripping

(a)Left-hand gripping (b)Right-hand gripping

22 NTT DOCOMO Technical Journal Vol. 15 No. 3

User Interface Using Natural Gripping Features—Grip UI—
N

TT
 D

O
C

O
M

O
 T

ec
hn

ic
al

 J
ou

rn
al

plify the selection of gripping style at the

time of map registration. The user can

also specify favorites ways of gripping

independently and register them while

verifying grip positions and their inten-

sity on a screen.

The above mechanism enables grip-

ping styles and issuing events appro-

priate for each user to be registered and

sequences of user-friendly operations to

be set.

4.3 Usage Example
The user operation sequence to move

from the browser application to the

startup of the mail application is shown

in Figure 9 for Grip UI and the normal

UI. As shown here, the mail application

can be started up with a single operation

by registering a gripping style and appli-
Figure 8 Examples of Grip UI setting screens

Check box

Presets

Content
registration/editing

Registered-template
editing

Preset selection

List of grip templates Registered-template editing screen

Registered-event editing screen

Entry name

Grip-pattern setting

Additional-input setting

Setting of issued UI event

Cancel button

OK button

Grip-position display

Grip-intensity display

UI-swap-map
registration function

Grip template
registration function

*This is provided only in Japanese at present.

Figure 9 Transition from browser application to mail-application startup

*This is provided only in Japanese at present.

Grip UI

Normal operation

1 Step

2 Step

Browser applica-
tion running

Start up mail
application

Grip upper part
of terminal

Return to
home screen

Press mail-
application icon

NTT DOCOMO Technical Journal Vol. 15 No. 3 23

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

cation-startup event beforehand. The

same result can be achieved by the con-

ventional method of returning to the list

of applications by pressing the home

button and then pressing the mail-appli-

cation icon. This mechanism makes

terminal operations even easier to per-

form by registering a gripping style and

corresponding event beforehand on a

user-by-user basis while enabling Grip

UI operations to coexist with ordinary

UI operations.

5.	 Conclusion

We have developed a new UI fo-

cusing on the simple user action of

“gripping a smartphone” and have

shown with a prototype terminal that the

state of gripping the terminal can be de-

tected in detail without having to modify

terminal shape. We have also shown that

each user’s natural gripping style can be

applied to terminal operations.

We envision a variety of applications

for Grip UI in addition to making one-

handed operation of a smartphone more

convenient as taken up in this study. For

example, combining the motions of

“gripping” and “tapping” should make

for an even greater diversity of opera-

tions. Furthermore, as the act of gripping

a terminal is considered to be an indi-

vidual feature, a study has been made on

applying gripping to personal authenti-

cation [6]. In short, this novel interface

should be able to give added value to

terminals in addition to enhancing usa-

bility.

In future research, we aim to create

new usage scenarios and services by

linking information on gripping style

with a variety of functions.

REFERENCES
[1]	 K.-E. Kim, W. Chang, S.-J. Cho, J. Shim, H.

Lee, J. Park, Y. Lee and S. Kim: “Hand

grip pattern recognition for mobile user
interfaces,” Proc. of the National Con-
ference on Artificial Intelligence, Vol. 21,
No. 2, pp. 1789- 1794, Jul. 2006.

[2]	 H. Lee, W. Chan, J. Park and J. Shim:
“New mobile UI with hand-grip recogni-
tion,” CHI’09 Extended Abstracts on
Human Factors in Computing Systems,
pp. 3521-3522, ACM, 2009.

[3]	 Nextinput Inc.: “ForceTouch.”
h t t p : / / w w w. n e x t i n p u t . c o m / t /
ForceTouch

[4]	 Touchence Inc.: “ShokacCube™.”
http://www.touchence.jp/en/cube/
index.html

[5]	 Nippon Mektron, Ltd.: “Flexible Tactile
Sensor.”
http://www.mektron.co.jp/technology_e/
new_tactile_sensor_fpc/

[6]	 T. Iso, T. Horikoshi, M. Tsukamoto and T.
Higuchi: “Personal feature extraction via
grip force sensors mounted on a mobile
phone: authenticating the user during
key-operation,” Proc. of the 11th Inter-
national Conference on Mobile and
Ubiquitous Multimedia, ACM, 2012.

24 NTT DOCOMO Technical Journal Vol. 15 No. 3

User Interface Using Natural Gripping Features—Grip UI—
N

TT
 D

O
C

O
M

O
 T

ec
hn

ic
al

 J
ou

rn
al

