
24

©2013 NTT DOCOMO, INC.
Copies of articles may be reproduced only for per-
sonal, noncommercial use, provided that the name
NTT DOCOMO Technical Journal, the name(s) of
the author(s), the title and date of the article appear
in the copies.

*1 Hadoop
TM

: A registered trademark of Apache
Software Foundation.

*2 IA server: A server equipped with an Intel
microprocessor. Its internal structure is very
similar to that of an ordinary PC, and it is less
expensive than servers based on other types of
microprocessor.

Large-Scale Data Processing Infrastructure for Mobile Spatial Statistics

Large-scale Distributed Data Processing Big Data Service Platform

1. Introduction
We are conducting research on a

data processing infrastructure that ana-

lyzes large-scale data (Big Data) and

developing new services [1]. One good

example of these services is Mobile

Spatial Statistics (MSS). This system

analyzes the huge amounts of opera-

tional data from mobile networks to

understand activities in society.

Hadoop[2] is drawing much atten-

tion as a platform for processing Big

Data. A Hadoop cluster is constructed

from commodity IA servers
*2

. It con-

sists of two major functionalities: the

Hadoop Distributed File System

(HDFS)
TM*3

for storing and managing

Big Data, and MapReduce to process it.

Hadoop is middleware
*4

for minimizing

the effects of server failure over the

entire system and it enables seamless

substitution of a failed server with a

new one. Thus, even though the number

of available servers decreases due to

server failure, issues such as data loss

or system crash can be avoided.

MapReduce is a framework that

decreases processing latency by distrib-

uting Big Data over multiple servers

and processing in parallel, allowing

processing capacity to be increased

flexibly according to the number of

available servers. Thus, a Hadoop clus-

ter composed of a large group of

servers permits some server failures and

reduces the operations and maintenance

load.

NTT DOCOMO has built a Hadoop

NTT DOCOMO Technical Journal Vol. 14 No. 3

So Ishida

Manhee Jo

Kenji Ishii

Gorou Kunitou

Makoto Nakayama

Ryohei Suzuki

Daisuke Ochi

Norihiro Kawasaki

Masafumi Oomachi

Ken Koumoto

NTT DOCOMO is conducting research on a data processing

infrastructure that analyzes large-scale data to develop and

create new services such as MSS. In this article, we describe

the design, configuration and operation of our Hadoop
TM *1

system which provides infrastructure for large scale data

processing, as well as program development for this system.

The system is composed of over 1,000 commodity IA servers

and uses open source software for monitoring and operation.

We have not only developed large-scale data processing pro-

grams using MapReduce but also optimized execution of the

programs.

Research Laboratories

DOCOMO Technology, Inc.,
Multimedia Division

Large-Scale Data Processing Infrastructure for
Mobile Spatial Statistics

Mobile Spatial Statistics Supporting Development of Society and Industry

—Population Estimation Using Mobile Network Statistical Data and its Applications —

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

ノート
NTT DOCOMO is conducting research on a data processing infrastructure that analyzes large-scale data to develop and create new services such as MSS. In this article, we describe the design, configuration and operation of our HadoopTM system which provides infrastructure for large scale data processing, as well as program development for this system. The system is composed of over 1,000 commodity IA servers and uses open source software for monitoring and operation. We have not only developed large-scale data processing programs using MapReduce but also optimized execution of the programs.

25

cluster called Stevia, which is a Big

Data processing infrastructure com-

posed of over 1,000 machines. Stevia is

composed entirely of commodity IA

servers and network equipment and was

designed using open source software

for monitoring and operations. This

made possible a short construction peri-

od and low cost. Due to the strengths of

Hadoop, we can maintain and operate

Stevia with a small number of people.

We have developed Big Data process-

ing programs using MapReduce, and

increased utilization of the large-scale

server cluster by optimization.

In this article, we describe the Ste-

via system design and construction,

maintenance and operations using its

open-source-software based monitoring

and operations system, and execution

optimization of distributed programs

processing Big Data.

2. Design and Construction
of Big Data Processing
Infrastructure

2.1 Hadoop

Hadoop is open source software for

Big Data processing comprising the

HDFS and the MapReduce program-

ming framework. HDFS manages Big

Data in the form of fixed-size blocks.

MapReduce programs run in parallel on

the servers that hold these blocks. In a

conventional database system, the stor-

age that holds the Big Data is separate

from the database engine. Thus, during

processing, small amounts of data are

repeatedly transferred between the stor-

age and the database engine. The basic

concept with Hadoop is that each server

maintains its own blocks of data, so that

unnecessary data transfer is saved.

The basic structure of the Hadoop

system is shown in Figure 1. The sys-

tem is composed of master nodes and

slave nodes. The slave nodes store and

process data. Two processes run on

each slave node: the DataNode process

maintains data blocks, and the Task-

Tracker process runs the MapReduce

program. The master nodes manage the

slave nodes, and consist mainly of a

NameNode and a JobTracker. The

NameNode manages the distribution of

blocks to the slave nodes. The Job-

Tracker controls execution of the

MapReduce program, sending controls

to start and stop the MapReduce pro-

gram to the TaskTrackers. This

sequence of MapReduce program exe-

cutions is called a job.

Basically, copies of each block are

maintained on multiple DataNodes. If a

particular DataNode dies, the NameN-

ode directs other DataNodes to create

copies of the blocks that were on the

dead DataNode, automatically main-

taining a predefined number of copies.

In this way data loss is prevented, even

if multiple slave nodes fail intermittent-

ly. The JobTracker sends instructions to

the TaskTrackers to run the MapRe-

duce program and monitors its execu-

tion. If the execution on a specific

*3 HDFS
TM

: The distributed file system used by
Hadoop. HDFS is a registered trademark of the
Apache Software Foundation.

*4 Middleware: Software positioned between
the OS and actual applications, providing com-
mon functions for diverse applications and
thereby making application development more
efficient.

NTT DOCOMO Technical Journal Vol. 14 No. 3

NameNode JobTracker

Master nodes

Slave nodes

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

Figure 1 Hadoop configuration

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

26

*5 Single point of failure: A location in a sys-
tem that would cause a whole system to fail if
it were to fail.

*6 DRBD
�

: Middleware that performs disk parti-
tion mirroring among multiple Linux servers.
DRBD is a trademark or registered trademark
of LINBIT Information Technologies GmbH in
Australia, USA, and other countries.

*7 Heartbeat: Software used for configuring
high-availability clusters. It provides function-
ality to substitute servers a service when the
original server providing the service fails.

*8 L2SW: A switch at the second layer of the OSI
reference model, the data link layer. Usually
this refers to a switching hub that transfers Eth-
ernet packets.

*9 L3SW: A switch at the third layer of the OSI
reference model, the network layer. Usually
this refers to a router that transfers TCP/IP
packets.

Large-Scale Data Processing Infrastructure for Mobile Spatial Statistics

TaskTracker fails, the command to run

the MapReduce program is re-issued to

another TaskTracker. The JobTracker

also controls other parameters such as

execution priorities when multiple jobs

are submitted. These functions enable

the system to continue operating even if

some slave nodes fail and the number

of available slave nodes decreases.

However, when a master node

including the NameNode or the Job-

Tracker fails, it cannot be replaced by

another node so it is a single point of

failure
*5

. Therefore, to increase reliabili-

ty, these servers must be designed with

redundancy.

2.2 Design and Construction

of Stevia

The server configuration for Stevia

is shown in Figure 2. The master node

group, which is a single point of failure,

is made redundant using a Distributed

Replicated Block Device (DRBD)
�*6

[3],

and Heartbeat
*7

[4]. The disk is com-

pletely synchronized between the two

servers by the DRBD, and Heartbeat

transitions the service to the standby

machine automatically if the active

machine fails, providing high reliabili-

ty. The monitoring server and install

server systems support monitoring and

operations.

Stevia is a large-scale server cluster,

and a network is necessary to connect

the many servers together. The Stevia

network configuration is shown in Fig-

ure 3. It consists of a working network

used for data processing, and a monitor-

ing network used for system manage-

ment. To prevent failure of a single

component from stopping the entire

system, Layer 2 SWitching hubs

(L2SW)
*8

, L3SW
*9

and server ports are

made redundant in the working net-

work. Server monitoring is done using

two methods: the OS and a remote con-

trol board
*10

. OS level monitoring is

done through the working network and

remote control board monitoring is

done through the monitoring network.

NTT DOCOMO Technical Journal Vol. 14 No. 3

Slave nodes (over 1,000)

Monitoring and operations system servers

Monitoring serverInstallation server

Laboratory

Operations staff
(three people)

Stevia

Master nodes

NameNode JobTracker

Check Web monitoring
 screens

Figure 2 Stevia server configuration

Working network

Monitoring network

10Gbps

1Gbps

L3SW

L2SW

Figure 3 Stevia network configuration

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

27

The operational state of the OS can be

monitored through the remote control

board, and the state of the remote con-

trol board can be obtained by logging in

to the OS, so the monitoring network

itself was not made redundant. Each

server is connected to a per-rack L2SW

by a 1 Gbps connection. There are 10

Gbps connections between the per-rack

L2SW and the higher-level L3SW.

Stevia was built in six months,

including the monitoring and operations

systems, from hardware delivery to the

start of operations. The server and net-

work equipment was all off-the-shelf

products, procured at low cost. When

operation of Stevia began, the HDFS

had a total capacity of approximately

one petabyte, but was found to be not

enough, so new slave-node servers

were added later. The servers could be

added easily, using the same procedures

as are used to recover failed servers,

and without stopping operation of all of

the servers.

3. Monitoring and
Operations of Stevia

We installed Stevia at a remote

location, separate from the authors’

ordinary workplace and laboratory. On

the other hand, we also built another

small scale server cluster for program

development and testing in the labora-

tory. This created the need for a moni-

toring and operations system not depen-

dent on the location or scale of the sys-

tem being monitored. Thus, we built

such a system using open source soft-

ware.

The Stevia monitoring and opera-

tions system implements the following

three functions.

• Server and network equipment

monitoring.

• Gathering server and network

equipment resource statistics (mem-

ory usage, CPU loads, etc.).

• Automatic installation of software.

These functions were implemented

using the open source software shown

in Table 1.

Nagios
�*11

[5] monitors the live-sta-

tus of servers and switches, server logs,

processes, HTTP
*12

, Simple Network

Management Protocol (SNMP)
*13

for

network devices and other elements,

and notifies operations staff of these

states. Comprehensive monitoring of all

Stevia equipment can be done through

Nagios, but due to the large number of

notification messages, message filtering

was also necessary. It is also necessary

to check the status indicators on the

actual devices, because there are faults

that do not result in SNMP warnings.

Ganglia
*14

[6] and Cacti
*15

[7] gather

CPU load, memory usage and disk

usage from server and network equip-

ment and display them. Ganglia can

also display the Java
�*16

memory usage

and number of connections of the

NameNode, which is a vital component

of the HDFS, by means of additional

modules.

KickStart
*17

[8] provides the auto-

matic installation function. KickStart

maintains a repository
*18

that is always

updated to the latest state, reducing the

work involved in recovering and adding

slave nodes. Set up of a single Stevia

slave node completed in approximately

18 minutes. Installation of DataNodes

can be done on 50 servers simultane-

ously, which reduces the time required

when all servers need to be changed at

once.

Since most of the hardware faults in

Stevia occur on slave nodes and do not

affect operation of Hadoop, no immedi-

ate reaction is required. When a hard-

ware fault occurs, the conditions are

checked and a request for repair is sent

to a hardware vendor offline. Measure-

ments have shown that approximately

0.5 person-months of work per month

is required to check faults and contact

vendors. Repair work does not need to

be done for every hardware fault, and

doing it once or twice per month is

enough.

*10 Remote control board: A control board
that enables remote computer operation regard-
less of the state of the OS, including turning
the power on and off, performing a hardware
reset, displaying a console screen and perform-
ing computer operations using a keyboard and
mouse.

*11 Nagios
�

: An application for monitoring
UNIX computers and network services. Nagios
is a servicemark, trademark and registered
trademark of Nagios Enterprises.

*12 HTTP: A communications protocol used
between Web browsers and Web servers to
send and receive HyperText Markup Language
(HTML) and other content.

*13 SNMP: A protocol for the monitoring and
control of communication devices (routers,
computers, terminals, etc.) on a TCP/IP net-
work.

*14 Ganglia: A real-time monitoring tool to gath-
er CPU and memory state information from
multiple servers, enabling them to be moni-
tored over the Web.

NTT DOCOMO Technical Journal Vol. 14 No. 3

Type Software

Monitoring

Statistics gathering

Automatic installation

Nagios

Ganglia

Cacti

KickStart

Table 1 Use of open-source software

for monitoring and operations

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

28

*15 Cacti: Cacti is a registered trademark of Cacti
Group, Inc. It is a tool for creating graphs from
SNMP data.

*16 Java
�

: An object-oriented programming lan-
guage. Applications implemented in Java exe-
cute on a virtual machine, so they can operate
on different platforms. Oracle and Java are reg-
istered trademarks of Oracle Corporation, its

subsidiaries, and affiliates in the United States
and other countries. Company and product
names appearing in the text are trademarks or
registered trademarks of each company.

*17 KickStart: A system for installing RedHat-
type Linux OS’s automatically.

*18 Repository: A system that records applica-
tion and system configuration data in one

place.

Large-Scale Data Processing Infrastructure for Mobile Spatial Statistics

Since it was launched, Stevia has

had an operations rate of 99.5%, based

on the time providing functionality as a

working Hadoop cluster. During this

period, we have had more than 1,000

operating servers continuously.

4. Optimization of Large-
scale MapReduce
Programs

Big Data processing with Hadoop is

implemented with programs based on

the MapReduce framework. A MapRe-

duce implementation consists of two

subprograms, a Mapper and a Reducer.

On each slave node, Mappers read

blocks stored there, select data con-

forming to specific conditions as key-

value pairs, and forward them to a spe-

cific Reducer based on the key (shuffle

process). Mappers perform this process-

ing in parallel. Reducers read the data

forwarded from Mappers and count val-

ues for each key or perform other com-

putations. Reducers also perform these

processes in parallel.

As an example, consider a program

that counts the number of mobile-net-

work control signals issued in Tokyo

during a certain date and time. Mappers

would check all signals issued during

the specified date and time and output

only those conforming to the Tokyo

condition. Then, the Reducers would

count the output from the Mappers to

get the result. If only one slave node

was used as the Mapper, processing

would require a very long time, but

using many slave nodes operating in

parallel the work can be completed in a

shorter time. This is similar to how a

large job can be completed more quick-

ly by dividing the work among many

people than by one person working

alone. If Mappers classify signals using

the prefecture as the key and send the

data to Reducers that count the signals,

47 Reducers can be used to count the

signals from the 47 prefectures in paral-

lel. In this way a MapReduce program

can process larger-scale data. Large-

scale programs implementing more

complex processing can be implement-

ed by chaining multiple MapReduce

programs in series.

In a program chaining multiple

MapReduce programs, the progress of

each MapReduce program must be syn-

chronized over all slave nodes. As

shown in Figure 4, no slave nodes can

begin the next MapReduce program

until all of the current MapReduce pro-

grams have completed, even they have

completed their own previous MapRe-

duce program. To reduce the overall

execution time of a large-scale pro-

gram, parallelism must be maximized

and run time must be minimized for

each MapReduce program, and execu-

tion time in each slave node must be

balanced as much as possible. Howev-

er, program execution time in each

slave node can easily differ greatly

depending on the amount of data to be

processed and other factors. For exam-

NTT DOCOMO Technical Journal Vol. 14 No. 3

MapReduce program MapReduce program

Slave node #5 is forced to wait during this time.

Slave node #4 is forced to wait during this time.

Time

Slave node＃１

Slave node＃2

Slave node＃3

Slave node＃4

Slave node＃5

Mapper Reducer M R

Mapper Reducer M R

Mapper Reducer M R

Mapper M R

Mapper M R

Figure 4 Example of running a large-scale MapReduce program

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

29

ple, when calculating totals using pre-

fecture as the key in the earlier case, the

number of signals issued in Tokyo

would be very large, so the execution

time of the Reducer calculating the total

for Tokyo would also be very long. In

such cases, the overall processing time

could be reduced by dividing the

process in two stages, for example, first

with a smaller scale unit such as munic-

ipalities and then re-aggregating in pre-

fecture units.

As described above, it is necessary

to partition processing over as many

slave nodes as possible and to optimize

execution so that the load is not concen-

trated on any particular node when

developing a large scale program with

MapReduce. However, such optimiza-

tion of large-scale MapReduce pro-

grams must be done manually, which is

quite difficult. If the amount of process-

ing on each slave node is too small,

communications overhead increases

or key complexity increases. Making

use of this experience in developing

large-scale MapReduce programs,

NTT DOCOMO is now developing

tools to monitor the execution state of

MapReduce programs across all

servers, to later visualize the results[9]

and to automate the process of execu-

tion optimization[10]. Optimizing exe-

cution further is an important research

topic for the future.

5. Future Issues
When Stevia was first built, we

expected the results of computation

with Big Data to be relatively small,

and assumed the initial HDFS capacity

would be enough. However, as the

types of programs diversified, it

became clear that the size of some

results were larger than expected, and

the HDFS capacity became insufficient.

We increased capacity by adding more

slave nodes, but we encountered scala-

bility issues with the NameNode. Poli-

cies for flexibly handling this sort of

explosive data increase and rules for

regulating newly generated data are

needed.

Hadoop is fundamentally a batch

processing system that shows its

strength in analyzing Big Data at fixed

intervals. However, there is also much

demand for analyzing the most recent

data immediately and displaying the

results in real time. One way to satisfy

such demand is to use data stream pro-

cessing. In the future, we will study

data stream processing methods as a

part of our data processing infrastruc-

ture.

One issue with utilizing big data is

gathering it together. Regardless of how

much data there is, if it cannot be col-

lected in one place so that it can be ana-

lyzed, it is of no use. Furthermore, gath-

ering data that is generated daily from

its sources without loss requires much

designing, building and operating work.

We also spent much time in designing

and building systems that automatically

and continually collect data. In the

future, we will also work on imple-

menting cost effective mechanisms for

gathering such data, with due attention

to handling data appropriately.

6. Conclusion
We have described Stevia, a Big

Data processing infrastructure. Stevia is

a petabyte class large-scale system sup-

porting the creation of MSS, but it has

been possible to maintain stable opera-

tion continuously with only a small

operations staff, by utilizing the

strengths of Hadoop. In the future we

will study data processing infrastruc-

tures to handle even larger, exabyte-

scale data, and aim to implement new

services using the mobile network.

References
[1] I. Horikoshi: “NTT DOCOMO Builds Giant

Mining Facility,” Nikkei Communications,

pp. 30-31, Oct. 2009 (In Japanese).

[2] T. White (auth), R. Tamagawa, S. Kaneda

(trans.): “Hadoop,” O’Reilly Japan, Jan.

2010 (In Japanese).

[3] DRBD: “DRBD.jp by Thirdware Inc.”

http://www.drbd.jp.

[4] Heartbeat: “Heartbeat - Linux-HA.”

http://www.linux-ha.org/wiki/Heartbeat

[5] Nagios: “Nagios - The Industry Standard

in IT Infrastructure Monitoring.”

http://www.Nagios.org

[6] Ganglia monitoring system: “Ganglia

Monitoring System.”

http://Ganglia.sourceforge.net

NTT DOCOMO Technical Journal Vol. 14 No. 3

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

30

Large-Scale Data Processing Infrastructure for Mobile Spatial Statistics

[7] Cacti: “Cacti - The Complete RRD Tool-

based Graphing Solution.”

http://www.Cacti.net/index.php

[8] KickStart: “Part VI. Advanced Installation

and Deployment.”

http://www.centos.org/docs/5/html/5.2/

Installation_Guide/pt-installadvanced-

deployment.html

[9] N. Kawasaki, S. Tanaka, I. Okajima: “A

method to visualize the communication

and execution processes of the MapRe-

duce program on large-scale distributed

systems,” IEICE technical report, Vol. 110,

No. 448, NS2010-257, pp. 527-532,

Mar. 2011 (In Japanese).

[10] M. Nakayama, K. Yamazaki, S. Tanaka:

“Alleviation Technique for Data Skew of

Reduce Phase with MapReduce Program-

ming Model,” IPSJ Journal, Vol. 53, No.

3, pp.1189-1203, Mar. 2012 (In Japan-

ese).

NTT DOCOMO Technical Journal Vol. 14 No. 3

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

