
30

*1 BLOCCO: Blocco is a trademark of GClue,
Inc.

*2 Mashup: To create and provide a service by
combining the content and services from sever-
al other, different services.

*3 Android
TM

: An open source platform targeted

mainly at mobile terminals or promoted by
Google Inc., in the United States. Android

TM
is a

trademark or registered trademark of Google
Inc., in the United States.

The “BLOCCO” Service Linking System, Enabling Combination of Services through User Configuration

Smartphone Context Awareness Service Linking

1. Introduction
There are several services available

that allow users to customize functions

to suite their varying needs. In particu-

lar, context aware services[1], which

allow service behaviors to be set

according to conditions in addition to

allowing simple customizations to

behaviors, are increasing [2][3].

Mashup
*2

[4] services, which allow ser-

vices to be combined as a form of cus-

tomization, are also appearing [5]-[8].

However, in most cases, these services

are difficult for users to operate, or as

they are, are limited in accomplishing

what the user desires.

For this reason, we have developed

BLOCCO[9], which enables users to do a

form of application-mashups by linking

applications like playing with building

blocks.

BLOCCO is an Android
TM*3

appli-

cation which runs on the Android

OS[10] and was developed jointly by

NTT DOCOMO and GClue Inc. Using

BLOCCO, users are able to combine

multiple Android applications, freely

configuring their behavior by detecting

occurrences of events in one application

and using them to trigger execution of

services, and by passing parameters

between applications and processing

them in various ways. BLOCCO moni-

tors the state of other applications,

mediates passing of parameters

between applications, and implements

automatic execution of applications

according to user configuration.

In this article, we give an overview

of the BLOCCO service linking system

and describe its effectiveness through

comparison with other related technologies.

2. The “BLOCCO” Service
Linking System

BLOCCO is an Android application

that runs on the Android OS, and can be

downloaded from the Android market-

place.

2.1 BLOCCO Features

With BLOCCO, multiple Android

applications are combined by configur-

ing a service execution scenario called a

plan. BLOCCO and plans configured

with BLOCCO have the following two

features.

1) Event-driven Programming
*4

Preset conditions such as “when xxx

The “BLOCCO” Service Linking System,
Enabling Combination of Services through User Configuration

NTT DOCOMO Technical Journal Vol. 12 No. 4

Hiroaki Hagino
†0

Kunihiro Fujii
†0

Junko Murakami
†0

Mirai Hara
†0

There are various services that implement context awareness

and creation of mashups that can be customized to meet

diversifying user needs, but most of these are difficult for

users to operate or are limited in what they can accomplish as

they are. For this reason, we have developed the BLOCCO*1

service linking system, which enables application-mushups

by linking applications like playing with building blocks.

BLOCCO has been developed jointly with GClue Inc.

Service & Solution Development Department

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

ノート
There are various services that implement context awareness and creation of mashups that can be customized to meet diversifying user needs, but most of these are difficult for users to operate or are limited in what they can accomplish as they are. For this reason, we have developed the BLOCCO*1 service linking system, which enables application-mushups by linking applications like playing with building blocks. BLOCCO has been developed jointly with GClue Inc.

31NTT DOCOMO Technical Journal Vol. 12 No. 4

occurs...” are detected and when these

conditions are satisfied, a service is

executed. In addition to running services,

BLOCCO can allow plans to be config-

ured from sets of action conditions and

run operations, and the user can assign

various Android applications to each

action condition or run operation.

2) Parameter Linking between Services

For an application assigned to a run

operation, parameters can be passed in

from other applications. The user can

also configure this type of action in a plan.

Examples of the main screens in

BLOCCO are shown in Figure 1.

BLOCCO uses plug-ins, which is a

general name for applications that can

be assigned to action conditions or run

operations, and applications that can

provide parameters to other applications

assigned to a run operation. Plug-ins

assigned to action conditions are called

event plug-ins, those assigned to run

operations are called action plug-ins,

and those that provide parameters to

action plug-ins are called input plug-ins.

Communication between each of

the types of plug-in in BLOCCO is

implemented using a protocol defined

with the intent
*5

mechanism provided

by the Android OS.

Next, we present some example

plans that are possible using BLOCCO.

• Example plan 1:

With this plan, if for example,

an item called “Meet for drinks” is

entered in the scheduler application

for between 7 and 10 pm at the

location “Roppongi”, then one hour

before hand, the plan automatically

initiates a search for a subway route

from the current location and arriv-

ing at Roppongi at 7 pm.

• Example plan 2:

With this plan, the user launches

the handwriting gesture application
*6

and draws a circle when arriving at

home, and the plan automatically

posts the message “At home now” to

Twitter
*7

.

Example plan 1 is almost the

same as functionality provided by

NTT DOCOMO’s i-concier service.

The plug-in assignments for example

plan 1 are shown in Figure 2. The

scheduler application is assigned as an

event plug-in and configured with the

condition “one hour before the regis-

tered item.” A subway route search

application is assigned as the action

plug-in. The arrival station and time

*4 Event-driven programming: To create a pro-
gram based on detecting the occurrence of partic-
ular events and using this to trigger execution of
sections of the program. With BLOCCO, it
refers to how users create scenarios for running
services.

*5 Intent: A mechanism provided by the Android
OS for programs to exchange parameters. Used
between components within an application and
between applications to exchange information.

*6 Handwriting gesture application: An
application for recognizing handwritten input.

In this article, it refers to an application that
allows the user to pre-register simple handwrit-
ten gestures such as a circle, and then for hand-
written input from the user, determines which
of the shapes it represents.

(a) Plan list screen (b) Plan configuration screen (c) Event plug-in list (d) Action plug-in list

Figure 1 BLOCCO screen shots

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

parameters required by the route-search

application are obtained from the

scheduler application, which is an event

plug-in, but it can also act as an input

plug-in to provide the parameters. The

departure station parameter is provided

by a GPS application. By using BLOCCO

in this way, an application can be run

automatically when any type of event

occurs, by pre-configuring a plan with

an action plug-in. In this way, by simply

changing the combination of plug-in

applications, various responses can be

configured, such as automatically

searching for a route to the event when

an e-mail arrives from a friend inviting

the user to an event.

The plug-in assignments for example

plan 2 are shown in Figure 3. For

example plan 2, a handwriting gesture

application is used as the event plug-in,

and a Twitter client application is the

action plug-in. In this example, BLOCCO

not only runs an application automati-

cally, it also provides semi-automatic

execution with a user-operation shortcut.

With BLOCCO, the trigger for a

plan is raised by an event plug-in. In

this way, if an application that monitors

the state of an Android terminal is con-

figured as an event plug-in, the plan can

run applications automatically, and if an

application that issues an execution

trigger due to user operation is config-

ured as an event plug-in, it can be used as

a shortcut, for semiautomatic execution.

Thus, BLOCCO provides an envi-

ronment that allows users to combine

the applications installed on an Android

terminal flexibly, creating a variety of

plans. This is particularly useful for users

that need to perform every-day operations

automatically or semi-automatically.

2.2 User Operation Support

Generally, most services allowing

32 NTT DOCOMO Technical Journal Vol. 12 No. 4

*7 Twitter: A registered trademark of Twitter
Inc. in the United States and other countries.

The “BLOCCO” Service Linking System, Enabling Combination of Services through User Configuration

Event

User operation

Run

Action
BloccoTweet

Handwriting gesture
application

Twitter client application

Figure 3 Example plan 2 plug-in assignment

Event

Run

Scheduler
application

Input

Latitude/Longitude ⇒
Departure station

Location ⇒
 Arrival station

Start time ⇒ Time

GPS
application

Schedule
application

Route-search
application

Action

Figure 2 Example plan 1 plug-in assignment

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

33NTT DOCOMO Technical Journal Vol. 12 No. 4

configuration of scenarios like plans in

BLOCCO are for PCs, and many of

them provide graphical display of para-

meter flow and relationships among

components making up the scenarios

[10]. However, BLOCCO presumes

operation by a user on an Android ter-

minal, so only a limited amount of

information that can be displayed on

the screen. With BLOCCO, particularly

when the user is configuring a plan, the

required plug-ins must be selected from

among many applications and these

must be configured, keeping the flow of

parameters between them in mind,

using the limited information displayed

on the screen. Because of this, BLOCCO

provides user support for configuring

plans using the methods shown below.

The screen transitions when configur-

ing example plan 1 from Section 2.1 are

shown in Figure 4.

1) Presentation of Plug-in List

BLOCCO automatically detects

whether applications that can be used as

plug-ins are installed. This allows a list

of plug-ins to be displayed when the

user is configuring a plan. The list of

plug-ins is shown to the user in the fol-

lowing situations.

• When an event plug-in or action

plug-in is to be assigned in a plan

• When an input plug-in is to be assigned

to a parameter of an action plan

2) Parameter Passing Configuration

One of the strengths of BLOCCO is

that connections linking services are

parameter-to-parameter, rather than

application-to-application. For exam-

ple, in example plan 1 in Section 2.1,

the “departure station,” “arrival station”

and “time” parameters for the route

search application are assigned to the

“latitude/longitude,” “location” and

“start time” values from the GPS and

scheduler applications. Thus, in BLOCCO,

the user can make transition directly from

the parameters displayed on the action

plug-in screen to a configuration screen

for an input plug-in. When the user selects

an action plug-in parameter, the input plug-

Scheduler

Plan
configuration

screen

Event
plug-in

list screen

Action
plug-in

list screen

Input plug-in
list screen

(1) Event
 configuration

(3) Complete
 configuration

(4) Action
 configuration

(6) Parameter
 selection

(8) Complete
 configuration

(9) Complete
 configuration

(7) Input plug-in selection

(2) Event plug-in
 selection

(5) Action plug-in
 selection

Route search

BLOCCO

Scheduler
application

configuration
screen

(events)

Scheduler
application

configuration
screen

(inputs)

Route-search
application

configuration
screen

(actions)

Figure 4 Example plan 1 configuration screen transitions

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

in list as described above is displayed.

Input plug-ins also have various set-

tings in BLOCCO (Figure 5). In the

example in the figure, the location,

“Roppongi,” is taken from the sched-

uler application, and that information is

used to generate the string, “I’m at Rop-

pongi,” which is passed to the Twitter

client application. For this case, there is

an input plug-in that retrieves a parame-

ter from another input plug-in, uses it to

generate a string, and provides it to

another plug-in as a parameter. In other

words, the string-generating and sched-

uler applications are connected as a

double input plug-in for the Twitter

client, which is an action plug-in. In this

type of case, the string generator appli-

cation could also be configured as an

input plug-in for a parameter of the

Twitter client application, and the

scheduler application could be config-

ured as an input plug-in for a parameter

of the string generator. With this type of

process, configuration of complex plans

can be done on the limited screen area

of the Android terminal.

3. Discussion Regarding
BLOCCO

3.1 The Service Linking Concept

BLOCCO has been designed and

developed based on a service linking

framework proposed by NTT DOCOMO.

This service linking framework takes

into consideration a combination of the

three concepts of user customization,

mashups, and context awareness
*8

, and

their related technologies. The service

linking framework is an environment

and technology that allows users, rather

than developers, to combine services

freely (user customization) and to con-

trol the behavior of services based on

parameters that are passed between ser-

vices (mashups, context awareness).

3.2 Related Technologies

There are various mechanisms that

allow users to create mashups from

services, including Plagger[5], Intelli-

gentPad
*9

[6], Yahoo! Pipes
*10

[7], and

Accelerators[8]. There are also context

awareness services that allow user cus-

34 NTT DOCOMO Technical Journal Vol. 12 No. 4

*8 Context awareness: A service that makes
decisions or changes behavior based on infor-
mation related to the user or service is called
context aware, and this concept and type of
behavior are called context awareness.

*9 IntelligentPad: A registered trademark of the
Sapporo Electronics and Industries Cultivation
Foundation.

*10 Yahoo! Pipes: Yahoo! and Yahoo! Pipes are
trademarks or registered trademarks of Yahoo!
Inc.

The “BLOCCO” Service Linking System, Enabling Combination of Services through User Configuration

Obtain location from schedule

BLOCCOBLOCCO

Run time Tweet!! I’m at Roppongi
Schedule data

Event: Meet for Drinks
Location: Roppongi

“I’m at Roppongi”
parameter passed

“Roppongi” parameter
passed

Generate a string based on
the received parameter

Configuration
time

Twitter client application
 (action plug-in)

String-generating application
 (input plug-in)

Scheduler application
 (input plug-in)

Call as an input plug-in Call as an input plug-in

Various inputs can be posted to Twitter

BloccoTweet

* For users that have not configured a twitter account,
the button above jumps to the configuration screen.

From BLOCCO

Select the input to post

Select input 1

A single string can be constructed from up to
four inputs
E.g.) Arriving at + Loc. name from (GPS

Select input 2

Select input 3

Select input 4

Figure 5 Input plug-in linking example

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

35NTT DOCOMO Technical Journal Vol. 12 No. 4

tomization, including Toggle Setting[3]

and Locale[2]. A comparison of these

technologies is shown in Table 1.

Of these, Locale is particularly

close to BLOCCO in concept. Locale is

an Android application that allows set-

tings in an Android terminal to be

changed automatically, and it features

freedom of configuration and automatic

execution. As an example, the user can

have the Android terminal switch

Wi-Fi
®*11

on or off when it enters a par-

ticular area. As with BLOCCO, the user

can combine these types of settings

freely. Locale also has an interface that

allows other Android applications to be

plugged in as “Events,” which trigger

configuration changes, or “Settings”

which can be configured, so the behavior

of various services can be modified and

it is not limited to terminal settings.

This concept allows multiple services

to be combined through event-driven

programming. However, although it

allows the state of one service to act as

a trigger for another service, it does not

allow parameter passing between ser-

vices as BLOCCO does.

3.3 BLOCCO User-convenience

As mentioned in the explanation of

linking technologies in Section 3.2,

there have been context aware services

with user customization, and also

mashup services, but there has been no

context aware service allowing combin-

ing of services (mashups) through user

customization. This is an area where

BLOCCO provides better convenience

and flexibility than other related tech-

nologies like Locale.

Recently, many applications have

also been developed and offered on

smartphones, for services that were

originally offered on the Web. As such,

enabling links between applications

should provide the best chances with

the least development cost for encom-

passing the most content and services in

the industry. Thus, while earlier

mashups were for Web services and

content, BLOCCO is for Android appli-

cations. Since BLOCCO itself is an

Android application, its range of influence

may seem to be limited to the within

the Android terminal, but BLOCCO’s

service linking concept is able to com-

bine any type of service or content, so it

constitutes a new platform.

*11 Wi-Fi
®

: A registered trademark of the Wi-Fi
Alliance.

△ ○

○

○

○

○

○

○

○

△ △

△

△

△

△

△△

◎ ◎

◎

◎ ◎

◎

◎

―

◎

◎◎

perl : An interpreted programming language. Generally well suited for processing string.
RSS (RFD Site Summary) : A method of encoding metadata such as Web page summaries that is generally used for notifying about Web page updates.

×

×

×

×

×

×

×

Plaggar

Context
awareness Mashup Simplicity Flexibility Ease of

installation Features

IntelligentPad

Yahoo! Pipes

Accelerators

Toggle Setting

Locale

BLOCCO

A mechanism for connecting Web services together.
Knowledge of perl is required for configuration

A service allowing users to create mashups by
cutting and pasting Web content. Content must
conform to a particular specification

A service allowing data obtained through RSS to be
processed in various ways. Easy configuration using a GUI

A service allowing a single parameter to be passed
from one Web content item to another. Special
knowledge is required for configuration

An application allowing the user to create sets of
terminal settings for each situation and then change
them with a single action

An application allowing detailed configuration of
terminal settings together with conditions and
operations. Can take other applications as plug-ins

A service that can combine with other applications,
creating sets of conditions and actions for running.
Parameters passed between applications at run time
can also be configured

Table 1 Comparison of BLOCCO and related technologies

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

3.4 Issues with BLOCCO

As described in Section 3.3, BLOCCO

is able to pass parameters between ser-

vices, in contrast to Locale. This allows

users to create scenarios more flexibly.

However, there is generally a trade-off

with the complexity of user operation

when functionality becomes more flexi-

ble or sophisticated. For example, com-

paring Toggle Setting and Locale, both

are able to change Android terminal

settings, but Locale provides more flex-

ibility in creating scenarios and because

of this, user operations are necessarily

more complex. BLOCCO is even more

flexible and sophisticated than Locale,

so operations required of users are even

more complex. BLOCCO is expected

to be used by users capable of complex

configuration, but to develop it as a new

platform, it will be important in the

future to prepare an environment that is

easy to use for users that are not yet

accustomed to its operations and settings.

3.5 BLOCCO Extensibility

The general utility of Web technol-

ogy and Web content is behind the

spread of mashup technologies for

users, as introduced in Section 3.2.

Since there is a large collection of this

generally useful technology, it makes

existing content available for various

other uses, and user mashups are one

such use. However, among the user

mashup technologies described in Sec-

tion 3.2, IntelligentPad, which supports

only content that conforms to its own

particular specification, is advanced and

very useful in concept and technology,

but in spite of this it has not become

particularly popular. Rather than gener-

al purpose Web content, BLOCCO

handles applications, and it can only

work with applications that have partic-

ular interfaces defined by BLOCCO for

plug-ins, not all existing applications.

Because of this, a certain amount of

development overhead relative to ordi-

nary applications is unavoidable when

developing an application that supports

BLOCCO. In order to minimize this

unavoidable development overhead, we

have published the BLOCCO plug-in

protocol interface specifications and a

BLOCCO Software Development Kit

(SDK)
*12

on the Web[9]. A screen shot

of the SDK is shown in Figure 6.

Using this SDK, a sample of the inter-

face source code for communicating

with BLOCCO can be generated auto-

matically, greatly reducing the over-

head required to develop a plug-in.

In addition to its concept of linking

individual applications, the specifications

and development environment needed

to develop plug-ins for BLOCCO have

been made public, so BLOCCO is also

very extensible.

4. Conclusion
In this article, we have described an

overview of the BLOCCO service linking

system, and shown its superiority as a

platform by demonstrating its usefulness

and extensibility in comparison with

other related technologies. In the future,

we plan to study mechanisms to help

users that have difficulty with configu-

ration to use BLOCCO as well, such as

a mechanism allowing plans created by

one user to be shared with other users.

References
[1] A.K. Dey and G. D. Abowd: “Toward a

Better Understanding of Context and

36 NTT DOCOMO Technical Journal Vol. 12 No. 4

*12 SDK: A tool or set of tools used for software
development.

The “BLOCCO” Service Linking System, Enabling Combination of Services through User Configuration

Figure 6 BLOCCO SDK

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

37NTT DOCOMO Technical Journal Vol. 12 No. 4

Context-Awareness,” Proc. of the CHI2000,

2000.

[2] “‘Toggle settings’ Configuration control

app ─Control tower for Android!─ |

androidnavi; Toggle Setting,” Jan. 2010

(Website).

[3] Locale for Android Web page.

[4] T. O’Reilly: “What Is Web 2.0─O’Reilly

Media,” Sep. 2005.

[5] Plagger Web page.

[6] Y. Tanaka: “The Meme Media Architec-

ture: IntelligentPad and its Applications,”

NII Information Processing, Vol.38, No.9,

pp.222-231, Mar. 1997 (in Japanese).

[7] Yahoo! Inc.: “Pipes: Rewire the Web;

Yahoo! Pipes.”

[8] Microsoft Corp.: “Internet Explorer 8

Readiness Toolkit; Accelerators.”

[9] BLOCCO Web page.

[10] Android Web page.

N
TT

 D
O

C
O

M
O

 T
ec

hn
ic

al
 J

ou
rn

al

