
51NTT DOCOMO Technical Journal Vol. 10 No. 4

*1 Java®: A registered trademark of Sun
Microsystems, Inc. in the United States.

*2 Profile: A group of APIs (see *9) and class
libraries.

*3 DoJa: A suite of Java program components
that provide functions used by the i-appli.

*4 Base class: A basic class from which other
class definitions are derived. In object-oriented

programming, a class is a template that defines
data structures and methods.

*5 i-WidgetTM: A trademark of NTT DOCOMO.

Java Platform i-appli Enhancement Terminal Applications

1. Introduction
The i-appli service was started in

2001 when a profile
*2

called DoCoMo

Java (DoJa)
*3

was installed in the mova

503i series. Since then, the DoJa profile

has evolved to the point where a wide

range of functions and services are now

available in i-appli, including games,

mobile electronic payments and corpo-

rate solutions.

However, with improvements in the

performance of mobile terminals and

diversification of mobile services, the

demands being placed on DoJa are also

becoming more sophisticated and

diverse. This has resulted in a function-

al demand to undertake a comprehen-

sive review of DoJa’s basic design, and

has necessitated a restructuring of its

functional configuration.

To further strengthen DoJa’s position

as an application platform, we developed

the new “Star” platform after considering

its compatibility with existing content.

Specifically, we reviewed the application

life cycle and programming model, and

we developed a new i-appli base class
*4

.

To augment the existing i-appli func-

tions we also developed WidgetView

(i-Widget
TM*5

), Java-Flash
®*6

connectivi-

ty, library addition functions, My Menu

registration functions, i-appli online

functions, and i-appli call functions.

This article describes the main addi-

tional functions. Details of the i-appli

online and i-appli call functions can be

found in Ref. [1].

2. Overview of the
Star Platform

2.1 System Configuration

The configuration of the Star plat-

form module is shown in Figure 1.

This platform consists of a full

application execution environment, a

mini application execution environment

and Java Application Managers (JAMs)

performing tasks such as controlling the

start-up of i-appli software in both exe-

cution environments. Different types of

applications run in these two types of

execution environment.

2.2 Advantages of Execution

Environments

The full application execution envi-

ronment is backwards-compatible with

services provided by conventional i-appli

software, and has been designed to

facilitate the addition of new functions

for a long time into the future. This

environment consists of the standard

Java class library Connected Limited

Device Configuration (CLDC)
*7

and a

Star profile for implementing new ser-

vices including DoJa functions. The

Star profile has been designed to take

over the services of the DoJa profile,

Application Functions for Autumn/Winter 2008 Models (2)
Next-generation Java Applications

Eriko Oseki

Mao Asai

Akiko Tobe

Niro Tsuchiya

It is now eight years since the launch of the i-appli service.

To further strengthen i-appli’s position as an application

platform for the creation of diverse services and solutions,

we have developed a new Java
®*1 platform called “Star.”

Communication Device Development Department

It is now eight years since the launch of the i-appli service. To further strengthen i-appli's position as an application platform for the creation of diverse services and solutions, we have developed a new JavaR*1 platform called "Star."

52 NTT DOCOMO Technical Journal Vol. 10 No. 4

Application Functions for Autumn/Winter 2008 Models (2) Next-generation Java Applications

but due to the refactoring
*8

of the Appli-

cation Program Interface (API)
*9

, there

is no binary
*10

compatibility with the

DoJa API.

Meanwhile, the purpose of the mini

application execution environment

(called WidgetView) is to run multiple

applications simultaneously. Unlike the

full application environment, Wid-

getView has a more limited range of

functions and uses a Virtual Machine

(VM)
*11

to process multiple applications

simultaneously.

The two execution environments

are configured as independent systems,

and it is possible to switch between the

two execution environments depending

on the method
*12

calls made by the

applications. In this way, we aimed to

implement the creation and linked oper-

ation of applications so as to exploit the

respective advantages of both execution

environments.

2.3 Review of Application Life

Cycle Model

Figure 2 shows the runtime state

transition diagrams of the StarApplica-

tion class (the common application base

class of the Star profile) and the IAppli-

cation class (the application base class

of the DoJa profile). The various states

of the StarApplication class are

described in Table 1. Methods are indi-

cated by the arrows in Fig. 2, where

method names beginning with a forward

slash represent callback methods

invoked by the corresponding state tran-

sition, while the other method names

represent state transitions that occur

when a method is called from i-appli.

The StarApplication class has three

advantages over the IApplication class.

The first is that it provides the sub-

states “Semi-Active” and “Full-Active”

when applications are running. Since

the StarApplication class must support

multiple applications running in paral-

*6 Flash®: A type of content developed by Macro-
media and Adobe Systems which allows audio
and vector graphics to be combined in animations.
Flash is a trademark or registered trademark of
Adobe Systems Inc. in the United States and
other countries.

*7 CLDC: A Java configuration defined for
miniature terminals such as mobile terminals

and PDAs.
*8 Refactoring: Updating the source code in

order to make improvements such as reducing
redundancy without changing the program
behavior.

*9 API: A set of rules that define programming
procedures used to access commands and func-
tions when software is developed for a particu-

lar platform (operating system or middleware).
*10 Binary: A computer program in a form that

can be run directly on a computer.
*11 VM: Software that allows Java programs to

run on different platforms.
*12 Method: In object-oriented programming, a

method is an operation performed on an
object’s data.

OS (mobile terminal implementation)

i-appli (full)

KVM (full)KVM (mini)

Full application/DoJa execution environment

CLDC CLDC

Star (mini) Star (full) DoJa

JAM
(module
manager)

i-appli
(mini)

i-appli
(mini)

JAM (mobile terminal request implementation layer)

WidgetView
ControllerUI Engine

WidgetView
Script

UI Engine
porting layer

Flash player

Java library

Native library
framework

Flash file

N
at

iv
e

lib
ra

ry

Mini application execution environment

JAM (mobile terminal request
implementation layer)

Content

Star system

KVM : K Virtual Machine

Mobile terminal OS

Figure 1 Star platform module configuration

53NTT DOCOMO Technical Journal Vol. 10 No. 4

lel, it offers two levels of support — a

“Semi-Active” state where resources

are used cooperatively, and a “Full-

Active” state where resources can be

reserved with priority — and allows

applications to find out which of these

states they are running in.

The second is that it provides a

“Started” state which is entered as soon

as the program has started running. This

makes it possible to program separate

initialization processes that only need to

be performed once when a program is

run.

The third is that an application is

able to issue a transition request to

place itself in a “Suspended” state. This

ability to pro-actively put software on

stand-by when waiting for user input

Terminated state

Active state

Paused state

/start()

/resume()

terminate()

Incoming
voice call, etc.

Terminated state

Started state

Active state

Full-Active
sub-state

Semi-Active
sub-state

Suspended state

terminate()

/started()

/activated()

/activated()suspend()

/stateChanged()

Incoming
voice call, etc.

(a) IApplication class (b) StarApplication class

i-appli execution state

State transition

Figure 2 State transitions of application base classes

Started state

Suspended state

Terminated state

Active state Full-Active

Semi-Active

• State immediately after program has started running
• A callback to StarApplication.started() is made at this state transition
• Automatically switches to the Active state after completion

• Active state
• A callback to StarApplication. activated() is made at this state transition

• Sub-state of the Active state
• State where the mobile terminal’s resources are made preferentially available

• Sub-state of the Active state
• State where resources cannot be used exclusively due to factors such as multiple execution

• Paused state
• Entered when there is an incoming phone call or when an application’s pause method is called

• End state

Table 1 Description of each state in the StarApplication state transition diagram

54 NTT DOCOMO Technical Journal Vol. 10 No. 4

Application Functions for Autumn/Winter 2008 Models (2) Next-generation Java Applications

and the like allows application develop-

ers to write software that pays more

attention to power savings.

3. WidgetView Functions
1) Functional Overview

To allow multiple mini applications

to be run simultaneously, we developed

a mini application execution environ-

ment called WidgetView. A mini appli-

cation is a subset of a full application

with a smaller program size, a smaller

usable memory size, and fewer avail-

able functions (Table 2). WidgetView

is run by pressing a special key in the

standby screen. This allows the user to

run multiple mini applications (e.g.,

daily life type applications such as a

news application, a weather report

application, a stock price application

and a map application) at the same time

instead of having to run each applica-

tion individually. Since each mini appli-

cation has its own drawing region in

WidgetView, the user can simultane-

ously obtain information provided by

multiple mini applications.

2) System Configuration

The WidgetView system configura-

tion is shown in Figure 3. WidgetView

consists of three parts: a MiniVM

which simultaneously processes multi-

ple mini applications, a User Interface

(UI) Engine which generates a single

screen display by applying effects and

the like to various elements such as

background images and the frames

drawn by mini applications, and a

WidgetView Controller which connects

the MiniVM and UI Engine together.

Each mini application draws in an off-

screen buffer
*13

(Fig. 3 (1)-(3)), which is

then swapped with a front buffer
*14

(Fig.

3 (4)). The UI Engine acquires the mini

application’s off-screen buffer (Fig. 3

(5)-(8)), and combines it with elements

such as a background image to produce

a single screen which is displayed to the

user (Fig. 3 (9)).

3) WidgetView Display States

WidgetView has three display

states (Figure 4).

In the multi-view display state, mul-

tiple mini applications are run simulta-

neously and displayed in miniature on a

single screen. However, in this state the

user is not able to interact with the mini

applications. WidgetView is displayed

in this state when the user presses a spe-

cial key in the standby screen.

In the individual display state, only

one mini application is running (the

other active mini applications are sus-

pended), and only this mini application

is displayed on the screen. In this state,

the user is able to interact with the mini

application.

In the launcher
*15

display state, a list

of mini application icons is displayed,

and the user is able to start up a mini

application by selecting the correspond-

ing icon. In this state, the active mini

applications are all suspended.

4) Mini Applications

In a mini application, the available

functions are limited depending on the

display state. Specifically, the functions

that can be used are more restricted in

the WidgetView multi-view display state

than in the individual display state. For

example, the functions for starting up a

browser and for making calls are only

available in the individual display state.

*13 Off-screen buffer: A memory device or
memory region which is not directly shown on
the display but is instead used for the tempo-
rary storage of data so as to compensate for
differences in processing speed and/or data
transfer speed when exchanging data between
different devices or programs.

*14 Front buffer: A memory region that stores
the data shown on the display. When a pro-
gram has finished writing data to the back
buffer, this data is display the data shown on
the display. When a program has finished writ-
ing data to the back buffer, this data is dis-
played by swapping the front and back buffers.

*15 Launcher: A function that displays a list of
pre-registered files and programs, and allows
them to be started up easily.

Feature Supported functions

Mini
application

Full
application

• Total of application size and data
storage size can be up to 2 MB

• Only one application can run at a
time

• All Star APIs available for use

• Application size limited to 50 kB,
data storage size limited to 200 kB

• Up to eight applications can run
simultaneously in a single screen

• Star API is partially available
• The memory size that can be used when

a mini application is running is about
1/10 the memory size that can be used
when a full application is running

• Functions compatible with mobile FeliCa*1

• Positional information acquisition
functions (GPS function)

• HTTP(S) communication functions
• Push initiation functions
• TCP/UDP communication functions
• My Menu registration / deletion functions
• Library download functions
• Java-Flash linkage functions
• Mini application linkage and initiation etc.

• Functions compatible with mobile FeliCa
• Positional information acquisition

functions (GPS function)
• HTTP(S) communication functions
• Full application linkage and initiation

*1 FeliCa : A registered trademark of Sony Corp.

Table 2 Differences between full applications and mini applications

55NTT DOCOMO Technical Journal Vol. 10 No. 4

Multi-view display state Individual display state Launcher display state

Mini
application

icon

One mini
application

Stand-by screen

User presses a
key to operate

User operation
such as pressing

a select key

Mini application
started by

selecting an icon

User presses a function key or the like to operate

検索

残金 120円
乗車駅 新宿
乗り越し 80円

アプリA アプリB

アプリA アプリBアプリB

マップマーケット情報

アプリ１ アプリ２

Figure 4 WidgetView display states

WidgetView Script

UI Engine

UI Engine
porting layer

WidgetView Controller

WidgetView
Specific Implementation

Mini VM

JAM

Mini
appli-
cation

Mini
appli-
cation

Mini
appli-
cation

…

Off-screen buffer on LCD

Off-screen buffer
drawn by MiniVM

(back buffer)

Off-screen buffer
drawn by MiniVM

(front buffer)

a

s

d

f

g

k

hjl

LCD : Liquid Crystal Display

Figure 3 WidgetView system configuration

56 NTT DOCOMO Technical Journal Vol. 10 No. 4

Application Functions for Autumn/Winter 2008 Models (2) Next-generation Java Applications

4. Java-Flash Linkage
Function

1) Functional Overview

We have developed a mechanism

that allows Flash files
*16

to be used in

i-appli. Specifically, we have developed

a mechanism that can play back Flash

files in i-appli and allows commands

from Flash files to be processed by

i-appli. This makes it possible for i-appli

to be used as a host application for

Flash games, for example, and allows

Flash files to be used as an i-appli user

interface.

This model is not compatible with in-

line playback
*17

, so Flash files are played

back in the full i-appli drawing region.

2) System Configuration

As shown in Figure 5, the system

consists of a Flash player that runs

Flash files, and a Java VM that runs the

i-appli software. The Java VM also

operates as a host application
*18

for the

Flash player.

3) Flash Files Usage Method

We set up an API for using Flash

files in i-appli. Through this API, i-appli

is able to control Flash players and to

accept and process commands sent

back from the Flash players.

The sequence of interaction

between i-appli and a Flash player is

shown in Figure 6. The Flash player is

generated by a method call from the

i-appli (Fig. 6 (1)). This Flash player is

then assigned a Flash file (Fig. 6 (2)),

and playback is started by a method call

(Fig. 6 (3)). ActionScript can be used to

transmit processing requests from the

*16 Flash file: A type of content developed by
Macromedia Inc. (now Adobe Systems Inc.)
which combines audio content with animated
vector graphics (file type “.swf”).

*17 In-line playback: A playback method where
content is played back by embedding it in part
of another application’s drawing region (e.g., a
page of HTML).

*18 Host application: An application that pro-
vides services and/or processes to other appli-
cations.

i-appli Java VM Flash player Flash file

aCreate Flash player
FlashPlayerPane（）

sSet Flash file
FlashPlayerPane#set（byte［］］ data）

dPlay back Flash file
FlashPlayerPane#play（）

fRequest for acquisition of
data from a Flash file

gReport event to i-appli
LocalMethodCalledEvent

Run data acquisition
processing requested
by i-appli

hTransmit data to Flash file
LocalMethodCalledEvent#sendDataq（byte［］ data）

jStop playback of Flash player
FlashPlayerPane#stop（）

Flash file is
played back

Create Flash player

Set Flash file to be played
back in Flash player

Instruction to play back
a set Flash file

Request for acquisition of data

Pass data to Flash player
Pass data to Flash file

Instruction to stop the
playback of a set Flash file

Figure 6 Usage method from i-appli

i-appli

Java VM

Flash player

Flash file

Middle layer

OS

Figure 5 System configuration

57NTT DOCOMO Technical Journal Vol. 10 No. 4

Flash file to the i-appli software (Fig. 6

(4)). Requests from the Flash file are

received by i-appli as event notifica-

tions (Fig. 6 (5)), and after performing

the required processing, i-appli sends

the results bask to the Flash file (Fig. 6

(6)). It is also possible for i-appli to stop

the playback of the Flash file by means

of a method call (Fig. 6 (7)).

Support is also provided for interac-

tive playback whereby Flash files are

played back based on user commands,

and key events are reported to the Flash

file. Function key events are reported to

i-appli, allowing i-appli to control the

playback of Flash files based on the

user’s actions.

5. Library Addition
Functions

1) Functional Overview

We have developed a mechanism

whereby library-formatted native func-

tions and their Java API can be down-

loaded to and run on mobile terminals.

The library addition functions can be

broadly divided into class files and

native functions
*19

which are referenced

from i-appli and are downloaded to the

mobile terminal as files (libraries) that

are separate from i-appli, and an execu-

tion environment where libraries are

loaded and executed from i-appli.

Libraries may be written in Java

(Java library) or in other languages such

as C or C++ (native library). There are

two ways in which libraries can be used

— one where only Java libraries are

used, and one where native libraries are

used from a Java library. Native libraries

can only be used with i-appli DX.

Using a Java library makes it possi-

ble to develop processing code libraries

separately from the GUI code. Using a

native library makes it possible to:

• Add native functions that are

unavailable in the pre-installed Java

class library (e.g., adding new code

types for a code recognition func-

tion together with a recognition

engine).

• Implement performance-critical

code in a native language.

• Re-use existing native code libraries

in i-appli.

2) System Configuration

As shown in Figure 7, the system

is configured from a JAM for down-

loading i-appli software and libraries, a

Java VM to run the i-appli software and

libraries, and a native library frame-

work to load and run native libraries

from the Java library.

3) Download Method

Following on from the conventional

i-appli download mechanism, the i-appli

software and corresponding libraries

are downloaded in turn. Specifically,

the JAM acquires the library’s Applica-

tion Description File (ADF)
*20

and

Security Description File (SDF)
*21

according to the ADF/SDF statements

in the acquired i-appli, then acquires the

library according to the library

ADF/SDF declarations, and finally

acquires the i-appli software.

4) Library Usage Method

Java libraries can be loaded and

used by i-appli at any time through the

standard API of the CLDC. The Java

libraries are also able to load native

libraries via a new API provided for

this purpose. When a native method

defined by a class included in the Java

library is called, it is possible to execute

the native function corresponding to

this native method via the native library

*19 Native function: A general term for software
functions other than i-appli that are installed on
the mobile terminal.

*20 ADF: A file that contains definitions and infor-
mation for Star applications and DoJa applica-
tions.

*21 SDF: A file that contains security-related defi-
nitions and information used by trusted appli-
cations. A trusted application is one that is
allowed to use special functions.

JAM

Star application Java library
Native library

Native interface

Service
functions

Java VM

Java API

Native library framework

OS

Figure 7 System configuration diagram

58 NTT DOCOMO Technical Journal Vol. 10 No. 4

Application Functions for Autumn/Winter 2008 Models (2) Next-generation Java Applications

framework (Figure 8). The native

library framework implements func-

tions necessary for the execution of a

native library, such as functions for

acquiring and releasing heap momory

used by the native library, functions for

calling callback functions to perform

native library suspension processing

when i-appli is suspended or terminat-

ed, and functions for accessing logs in

order to debug native libraries. By

using these functions from the native

library, it is possible to terminate the

native library processing at suspension

opportunities particular to mobile termi-

nals such as when receiving a call,

thereby allowing the terminal to be

rapidly switched over to handling calls.

6. My Menu Registra-
tion Function

1) Functional Overview

We have specified an interface from

i-appli to treasure Casket of i-mode ser-

vice, high Reliability platform for CUS-

tomer (CiRCUS)
*22

, and we have devel-

oped a function that can transmit the

parameters necessary for My Menu reg-

istration from i-appli. So far, it has only

been possible to perform My Menu reg-

istration from an i-mode browser,

which meant it was necessary to start

up the browser from i-appli in order to

perform My Menu registrations. The

introduction of this function means that

My Menu registrations can now be per-

formed completely by i-appli. For

example, users can now directly regis-

ter in My Menu an i-appli game they

are trying out. This added convenience

can be expected to promote sales of

content.

2) System Configuration

The My Menu registration function

consists of a Java VM which hands

over parameters passed from i-appli to

the mobile terminal, and a mobile ter-

minal module which links these para-

meters with parameters such as the

password input from the mobile termi-

nal, transmits then to CiRCUS, and

processes and displays the response

from CiRCUS.

3) My Menu Registration Usage

Method

We provided a new API for per-

forming My Menu registrations from

i-appli. The processing sequence is

shown in Figure 9. For security rea-

sons, the password input by the user

and the response from CiRCUS are not

handled directly by i-appli, so some of

the functions are allocated to the mobile

terminal instead.

This API is used to select the regis-

tration/deletion parameters and whether

to perform a single or multiple registra-

tion. When performing these actions,

the Java VM puts the parameters into a

*22 CiRCUS: A device that serves as an interface
between the NTT DOCOMO core network and
the Internet, provides i-mode mail, i-mode
menu, ordinary Internet access, and other func-
tions.

Native library
framework

Java VM

Native function
execute processing

Star application
Java library

Native library

Native library
load API

Native method
call

Native method
call

Native function
call

Native function
end

Native method
end

Native method
end

Figure 8 Native library call sequence

59NTT DOCOMO Technical Journal Vol. 10 No. 4

suitable format and hands them over to

the mobile terminal module. At this

time, the Java VM is suspended. The

mobile terminal module transmits the

parameters to CiRCUS, and performs

actions such as prompting the user to

input a password or displaying a confir-

mation screen depending on the

response from CiRCUS. According to

the user’s actions, the mobile terminal

module links together the parameters

passed by the API with the password

provided by the user and the response

from CiRCUS, and transmits them back

to CiRCUS. After that, the registra-

tion/deletion processing results are

processed and reported back to i-appli via

the Java VM to inform the user of the

success or failure of the operation.

To protect users, only i-appli DX is

allowed to use this function because

there are cases where registration pay-

ments may be issued in order to access

non-free sites. Access from ordinary

applications is prohibited.

7. Conclusion
In this article, we have described an

overview of the newly developed Star

platform, and we have described the

WidgetView, Java-Flash linkage,

library addition and My Menu registra-

tion functions.

In the future, we aim to make the

Star platform play the role of an appli-

cation platform, and to pursue further

enhancements, performance improve-

ments and added convenience.

References
[1] N. Mizuguchi et. al: “i-appli online and

i-appl i cal l System for Real-t ime

Communication with Mobile Terminals,”

NTT DOCOMO Technical Journal, Vol.

10, No. 4, pp. 60-67, Mar. 2009.

i-appli
Java VM

My Menu registration
 / deletion API

End of My Menu
registration / deletion

Mobile Terminal
module

Transmit parameters

Parameter check

Password check
IP registration / deletion

 processing request

Decision based on results of IP
registration / deletion processing

Perform IP user registration / deletion
processing and transmit back result

HTTP request

HTTP request

HTTP response

HTTP response

HTTP response

HTTP request

Response processing

Input password
and transmit

CiRCUS Internet Provider

Figure 9 My Menu registration processing sequence

