
59NTT DOCOMO Technical Journal Vol. 10 No. 3

Anomaly Detection System Antivirus Application Monitoring

Yuka Ikebe

Takehiro Nakayama

Masaji Katagiri

To deal with the threat of viruses that target mobile terminals,

an ADS was proposed and evaluated on an embedded board

simulating a mobile terminal. This research was conducted

jointly with the Kato Laboratory (Professor Kazuhiko Kato) of

the Graduate School of Systems and Information Engineering,

University of Tsukuba.

1. Introduction
The first virus to infect mobile ter-

minals was discovered in June 2004.

Since then, the number of mobile-ter-

minal viruses has been increasing and

there are currently several hundred

types. Because platforms
*1

on which

viruses were discovered are limited,

these viruses do not present a problem

in Japan at the moment. However, they

may present a threat in the future and

the need for mounting effective coun-

termeasures is growing. The current

mainstream antivirus technology is a

virus scan
*2

. Given a newly created

virus, it is defined as “unknown” at the

time of its completion and as “known”

once a security vendor becomes aware

of it. Accordingly, a virus scan can

detect a known virus with good effi-

ciency but has more difficulties in

detecting an unknown virus. During the

time interval from unknown to known

and to the creation and distribution of a

pattern file that records the new virus

pattern, the number of people harmed

by an unknown virus can increase con-

tinually. With damage by viruses on the

increase, it becomes increasingly

important to shorten this time interval.

In response to this need, we first

focused our attention on shortening the

time involved in changing from

unknown to known considering the

great effect that this would have on eas-

ing the threat of viruses.

In general, security vendors obtain

information on unknown viruses by

using honeypots
*3

or surveying Web

sites. These methods need time to col-

lect the information. It is thought that

the time taken for getting hold of such

information can be shortened by obtain-

ing information on anomalous behavior

occurring in a mobile terminal. Agree-

ing with this idea, we decided to adopt

anomaly detection technology for

detecting the occurrence of anomalous

behavior. Here, overhead and accuracy

can be used as indexes of Anomaly

Detection System (ADS) performance,

but since these two characteristics have

a trade-off relationship, a technology

that can provide good balance between

the two appropriate for the application

and usage environment needs to be

found. In our research, our goal is to

develop an ADS that can run on a

mobile terminal, and we therefore

established the constraint that the sys-

tem must be able to run in an environ-

ment with minimal computational

resources while also being accurate. In

addition, the accuracy index can be

classified into false positive and false

negative, which also have a trade-off

relationship. In light of the above, we

decided to target an ADS that priori-

Anomaly Detection System for Mobile Terminals

*1 Platform: OS or operating environment for
running applications

*2 Virus scan: An antivirus technique that
records virus features as patterns and checks
for matches

*3 Honeypot: An intentionally prepared easy-to-

attack location for discovering attacks on a sys-
tem

Research Laboratories

To deal with the threat of viruses that target mobile terminals, an ADS was proposed and evaluated on an embedded board simulating a mobile terminal. This research was conducted jointly with the Kato Laboratory (Professor Kazuhiko Kato) of the Graduate School of Systems and Information Engineering, University of Tsukuba.

60 NTT DOCOMO Technical Journal Vol. 10 No. 3

Anomaly Detection System for Mobile Terminals

tizes the reduction of the false negative

rate while allowing a false positive rate

at a level that can be handled by securi-

ty vendors that receive detection

notices. Many anomaly detection tech-

nologies have already been proposed,

but there is none that can satisfy all of

the above conditions. We therefore pro-

posed an ADS that takes these condi-

tions into account. We also implement-

ed this system on an embedded board

having the same level of performance

as a mobile terminal and using this

board, we measured accuracy and over-

head and demonstrated the possibility

of running an ADS on a mobile termi-

nal. This research was conducted joint-

ly with the Kato Laboratory of the

Graduate School of Systems and Infor-

mation Engineering, University of

Tsukuba.

2. ADS
Anomaly detection technology

judges an event that diverges from a

previously defined normal event to be

an anomaly. In this regard, we consider

that a virus performs malicious opera-

tions according to the attacker’s design

and that an application infected with a

virus demonstrates behavior different

from the norm. The proposed system

therefore adopts a technique that uses

application behavior as an event. With

this technique, those applications for

which prevention of virus infection is

desired are designated as monitored

applications. Each application is then

modeled and monitored.

2.1 Modeling

In modeling, the system acquires

the behavior of a monitored application

and creates a model that expresses nor-

mal behavior of that application.

Behavior can be acquired by either of

two methods: learning actual behavior

or analyzing source code. The former

leaves open the possibility of false posi-

tives since insufficient learning can

result in labeling certain behavior as

anomalous despite the fact that it is per-

fectly normal. The latter, on the other

hand, may result in false negatives

since incorrectly judged behavior that

can occur or cannot occur depending on

operating conditions can result in the

labeling of anomalous behavior as nor-

mal. Given that one requirement of the

proposed system is to give priority to

the reduction of false negatives, the for-

mer method is adopted here.

False positives as described above

when modeling by learning needs to be

investigated. The basic principle behind

anomaly detection technology is that

only events included in the model are

considered to be normal while all other

events are considered to be anomalies.

However, if such be the case, non-

exhaustive learning at the time of mod-

eling will give rise to false positives.

Denoting all events that can happen as

X, normal events as Y, and the set of

normal events included in the model as

M, ideally Y = M. In the case of insuffi-

cient learning, however, we have

. During monitoring, the occur-

rence of M behavior and behav-

ior will be correctly judged to be nor-

mal and anomalous, respectively, but

behavior will be judged anom-

alous despite it being normal. In a sim-

ple application, all normal events can

be easily learned so that Y = M and false

positives do not occur. In contrast, an

application like an editor or browser is

complicated in input and other opera-

tions, and learning all normal events

can be extremely difficult with the

result that . Here, the problem of

false positives cannot be ignored. The

proposed system attempts to reduce the

false positive rate caused by the above

situation.

In general, a particular application

is used for a specific purpose, which

means that behavior within the same

application tends to be similar. Thus,

even normal behavior that has not yet

been learned () has a high possi-

bility of having features similar to nor-

mal behavior obtained through learning

(M). On the other hand, anomalous

behavior associated with virus-based

attacks () differs from the inher-

ent purpose of the application in that it

carries out the intentions of the attacker

such as stealing data, crashing the sys-

tem, etc., which means that it has fea-

tures different from the behavior

obtained through learning. Based on the

above, we adopted an approach that sta-

tistically models normal behavior

X Y∩

Y M∩

Y⊃M

Y M∩

X Y∩

Y⊃M

61NTT DOCOMO Technical Journal Vol. 10 No. 3

*4 System call: A mechanism for calling an OS
function from an application

*5 Return address: The address that a function
returns to; the address of the instruction that
must be executed next on completion of a cer-
tain function

*6 Call stack: A memory area that records infor-
mation on functions to be called during execu-
tion of an application

obtained through learning and quanti-

fies the extent to which inspected

behavior diverges from the model with

the aim of detecting anomalies based on

that value.

There is generally a high possibility

of a system call
*4

occurring when a

virus performs operations according to

the intent of the attacker. This is

because OS functions like file opera-

tions must be used to affect consider-

able damage in an attack, and in most

cases, a system call is used for this pur-

pose. For this reason, there have been

many proposals for techniques that

monitor applications for system calls as

behavior to be watched for. However,

an attack method that cannot be detect-

ed by this system-call technique has

been discovered [1]. Thus, in the pro-

posed system, we used both system

calls and return addresses
*5

as behavior

to watch for and attempted to reduce

the false negative rate.

Specifically, we used a system call

and return addresses stored on a call

stack
*6

at the time of a system call as

behavior to be examined and defined

this as It (where t is any integer).

(1)

Here, Sys denotes system call num-

ber, mx a return address, and x the posi-

tion of the return address on the call

stack. Setting the uppermost item on the

stack to 0, this value is incremented by

1 for each item moving downward on

the stack with an indicating the lower-

most item.

In model creation, all return

addresses included in obtained behavior

are classified and grouped by system

call number Sys and position x. In other

words, this model is configured so that

the return addresses stored at certain

positions on the call stack at the time of

a certain system call can be understood.

Once grouping is completed for all

behavior, a score can be computed by

equation (2) for each group for use dur-

ing monitoring.

(2)

Here, N is the number of return

addresses included in each group. A

modeling example is shown in Figure

1.

2.2 Monitoring

The monitoring process obtains

behavior of the monitored application,

performs an inspection by comparing

that behavior with the model, and cal-

culates an anomaly score that represents

the extent of anomalousness. A moni-

toring example is shown in Figure 2.

In the inspection, the model checks

whether a return address obtained as

behavior is included in a proper group

(a group with the same system call and

position as that of the model). If not

included, an error occurs and the score

of the group in question is added to the

anomaly score.

In this method, a score is added to

the total anomaly score for all return

addresses not fitting the model, where

the formula used to compute each score

is designed to express the degree of

divergence from the model. The score

is large for small N and small x mean-

ing that divergence is large. A small N

means that the number of elements in

the group is small and that return

addresses other than those occurring

during learning have a low possibility

of appearing. Thus, the occurrence of

an error for a group with small N is

thought to indicate large divergence

from the model. A small x, moreover,

means a position near the top of the call

stack. The closer a return address is to

Score
N

=
×
1

2x

It ={Sys, ma, ma-1, …, m1, m0} Behavior

Model

Score=1/4 Score=1/2

〈S1, 0〉〈S1, 1〉
0X03, 0X050X01, 0X02

｛S1, 0X01, 0X09｝I3 =

Fits

Does not fit

Not added

Added

Anomaly score=1/2

Figure 2 Monitoring exampleFigure 1 Modeling example

Behavior

Model

Score=1/2 Score=1/4

Score=1 Score=1/2

Score=1/4

〈S1, 0〉 〈S1, 1〉

〈S2, 0〉 〈S2, 1〉

〈S1, 2〉
0X03, 0X05 0X01, 0X02 0X01

0X010X02

｛S1, 0X01, 0X02, 0X03｝I0 =

｛S2, 0X01, 0X02｝I1 =

｛S1, 0X01, 0X05｝I2 =

Grouping for each〈Sys, x〉

: Behavior
: System call number

: Position on call stack

It
Sys
x

62 NTT DOCOMO Technical Journal Vol. 10 No. 3

Anomaly Detection System for Mobile Terminals

*7 Armadillo®: Embedded devices manufactured
by Atmark Techno, Inc.; a registered trade-
mark of the same

*8 ARM
TM

architecture: CPU architecture for
embedded devices featuring low power con-
sumption. ARM

TM
is a trademark of ARM Ltd.

*9 a2ps: An open source application that converts a
document file to an image file in PostScript format

*10 scp: An open source application that safely
copies files between hosts by encryption

*11 tnftp : An open source application that
exchanges files and directories with a server

*12 vilistextum: An open source application that
converts an HTML file to a text file

*13 emacs: An open source application having
sophisticated text-editor functions

*14 greed: An open source application having a
function for downloading files

the top of the stack, the stronger is the

correlation with the system call. As a

result, the occurrence of an error for a

group with small x likewise indicates

large divergence from the model. Scor-

ing in this way enables the system to

judge behavior as normal or anomalous

even if that behavior has not actually

been learned.

3. Evaluation
We first implemented the proposed

ADS on the evaluation board (Armadil-

lo
®*7

-500) shown in Photo 1. The

CPU incorporates ARM
TM

architecture
*8

widely used in mobile terminals and

Linux 2.6 as the OS. Next, we ran actu-

al applications on the implemented sys-

tem and evaluated overhead and accu-

racy.

3.1 Overhead Performance

Evaluation

For the evaluation, we used four

types of applications for which the

beginning and end of execution could

be clearly measured. These were a2ps
*9

,

scp
*10

, tnftp
*11

, and vilistextum
*12

. Over-

head was calculated by equation (3)

using the time to execute the applica-

tion with monitoring (Tads) and the time

to execute the application itself (Tapp).

(3)

The value for Tapp fluctuates even

for the same application so that over-

head changes as well. Thus, in this

experiment, we selected input data size

as the factor behind this fluctuation in

Tapp and carried out measurements

using files of 1 kB, 10 kB, 100 kB, 1

MB, and 10 MB in size. Measurement

results are shown in Table 1.

More than 60% of measurement

results in this experiment were 15% or

less. The reason why the other overhead

values were so large is thought to be

that a small Tapp makes the fixed time

required for monitoring relatively large.

In actuality, Tapp was 0.32 s or less for

all overhead in Table 1 greater than

15%. In this experiment, overhead was

small for large Tapp and large for small

Tapp. For the latter, though overhead is

large, execution time is short and any

feeling of discomfort felt by the user is

thought to be small. Based on the above

results, we consider the overhead gen-

erated by this system to be acceptable

in actual use.

3.2 Accuracy Performance

Evaluation

In this evaluation, we used four

applications having vulnerabilities,

namely, a2ps, emacs
*13

, greed
*14

, and

vilistextum. Furthermore, to generate

anomalous behavior, we created pseu-

do-viruses that exploit these vulnerabil-

ities. Here, a model was prepared for

each application using behavior

obtained with one type of input. With

these models, we evaluated accuracy by

comparing anomaly score when moni-

toring normal behavior and that when

monitoring anomalous behavior

induced by the above pseudo-viruses.

Experimental results are shown in

Table 2. These results show that

anomalous behavior results in scores

that are much larger than those of nor-

mal behavior. An existing anomaly

detection technique called VtPath [2]

makes use of system calls and return

addresses the same as the proposed sys-

[%] = ×100
－ Overhead

Tads　 Tapp

Tapp

Photo 1 Embedded board

Application
a2ps

55

38

13

7

3

scp

8

11

12

3

2

tnftp

69

76

81

61

15

vilistextum

Could not measure

Could not measure

26

≒0

≒0

Input data size

100 kB

10 kB

1 MB

1 kB

10 MB

15% or less

Table 1 Overhead measurement results (%)

63NTT DOCOMO Technical Journal Vol. 10 No. 3

tem, but its basic anomaly detection

principle is to treat as normal only

learned events as described earlier. As a

result, false positives occur for all of the

above applications for the amount of

learning performed in this experiment.

For the proposed technique, however,

the experiment demonstrates that nor-

mal and anomalous behavior can be

judged by an anomaly score and that

false positives and false negatives can

be prevented.

4. Conclusion
We proposed an ADS for detecting

anomalous behavior for mobile termi-

nals and demonstrated the usefulness of

the proposed system by implementing

the system in an environment equiva-

lent to a mobile terminal.

In future research, we plan to per-

form more detailed evaluations by

using more practical applications and

pseudo-viruses having more advanced

attack techniques. We will continue our

studies on the feasibility of equipping

mobile terminals with this system.

References
[1] D. Wagner and P. Soto: “Mimicry attacks

on host-based intrusion detection sys-

tems” in Proc. ACM Conference on

Computer and Communications Security,

pp. 255-264, 2002.

[2] H.H.Feng, O. Kolesnikov, P. Fogla, W.

Lee, and W. Gong: “Anomaly detection

using call stack information” in Proc.

2003 IEEE Symposium on Security and

Privacy, pp. 62-75, 2003.

Application
a2ps

0.37

132

emacs

0.53

526

greed

0.017

763

vilistextum

9.69

454

Monitored behavior

Anomalous

Normal

Table 2 Output anomaly score

