

電波暗室における基地局アンテナの 放射特性測定手法の開発

基地局アンテナ

先進技術研究所

指向性

こみや かずひろ

小宮 一公

ちょう

€

けいぞう

敬三

利得

やまぐち

山口

りょう

良

基地局アンテナのような波長に対して長いアンテナ の放射特性を測定するためには屋外などの十分広い測 定場所が必要であり,一般的な大きさの電波暗室では 測定距離が不十分という課題がある.このため,基地 局アンテナを不十分な距離で測定したときの放射特性 を精度良く測定する手法を開発した.これにより,天 候に左右されず,電波暗室にある通常の指向性測定設 備を用いて基地局アンテナの放射特性を測定すること が可能になった.

1. まえがき

携帯電話基地局アンテナの放射特 性(指向性*1・利得*2)は回線設計 上重要なパラメータであり、仕様ど おりの性能になっているかを正確に 把握することは重要である。基地局 アンテナには周波数や設置場所に適 したさまざまな種類があるが、一般 に写真1に示すような屋外に設置さ れる基地局アンテナは,所望のサー ビスエリア形成のため, 垂直方向に は長く水平方向には短い特殊な形状 を有する。一例としてIMTで用いら れる2GHzの周波数(波長15cm)に おいて、基地局アンテナの垂直方向 は2mを越える長さとなる場合が 多い。

このように波長に対して大きな長 さを有するアンテナの遠方界*³指向 性を測定するためには,長い測定距 離が必要である.具体的には前記の 周波数2GHzで長さ2mの基地局ア ンテナの場合,遠方界の指標として 一般に用いられる2D²/λ (Dはアン テナの長さ,λは波長)に当てはめ ると,このアンテナの測定距離とし ては約60mが必要となる.この距離 は一般的な大きさの電波暗室^{*4}では 確保が困難であり,上記に満たない 不十分な距離で測定しても指向性は 正確に測定できない.

これを解決するためには、十分な 距離を有する屋外で測定する方法が あるが、場所の確保や天候に左右さ れるという問題がある.また、電波 暗室などの屋内で指向性を測定する 方法[1][2]もあるが、別途大掛かり で特殊な装置系を必要とする.これ らのことから、基地局アンテナの遠 方界指向性を測定することは容易で はない.さらに,基地局アンテナの

- *1 指向性:アンテナの放射特性のひとつで, アンテナからの放射強度(あるいは受信 感度)の方向特性のこと.
- *2 利得:アンテナの放射特性のひとつで, アンテナの最大放射方向の放射強度が基 準アンテナの何倍あるかを示す指標.

© 2012 NTT DOCOMO, INC. 本誌掲載記事の無断転載を禁じます. 放射特性は、アンテナメーカごとに 測定環境が異なることから統一した 測定手法により行われておらず. メーカ間で測定精度に差分が生じる 可能性を考慮して基地局アンテナの 仕様合格範囲に余裕を見積もる必要 があった.現在の基地局アンテナが 周波数と偏波*5を共用し、フィルタ や移相器を内蔵した複雑な構造に なっていることを考慮すると、ドコ モが性能を評価把握するうえでは. 基地局アンテナの放射特性を検証で きる環境が必要となっている. この ような課題に対し著者らは、アンテ ナメーカおよびドコモで共通に有す る設備である電波暗室において、基 地局アンテナを不十分な距離で測定 したときの放射特性を精度良く測定 する手法を開発した.開発した手法 は,アンテナ形状の特殊性を考慮 し. 通常の電波暗室にあるネット ワークアナライザや回転台などを使 用した指向性測定システムを適用し て不十分な距離での測定を行い、こ こで取得したデータを基にパソコン 上で平面波を生成することにより遠 方界指向性測定を可能にしたもの である.

この手法を導入することにより,

- ・電波暗室で測定可能という点で 天候に左右されるという問題が ない
- ・不十分な測定距離における平面 波の生成を、特殊な装置系を必 要とせずパソコンを用いた数値 処理で実現可能という点で、本 測定手法の他の測定場所への展 開が容易である

というメリットが生じる. これによ り,メーカおよびドコモが統一した 測定手法で実施可能となった.

本稿では,電波暗室における基地 局アンテナの指向性・利得測定法の 基本検討について解説する.

2. 合成開ロアレーアン テナを用いた測定

2.1 遠方界指向性測定

図1に本手法である合成開口アレ ーアンテナを用いた測定の測定原 理を示す.本測定は(A)実測定と (B)仮想測定の2つの過程に分けら れる.

 (A)実測定:まず図1 (a) に示す ように、電波暗室において被 測定アンテナ (AUT: Antenna Under Test)のブロードサイド
*⁶正面をx軸方向とし、中心が 原点のに一致するように設置 する.次に、x軸の遠方界指標 に満たない測定距離(以下,有 限距離)*R*に対向アンテナを一 つ設置する.そして、AUTを 回転角*θ_i*で回転させながら, 対向アンテナからの複素受信 電界^{*7} $E_{near}(\theta_i)$ をネットワー クアナライザにより測定し, そのデータをPCに取り込む. この過程は電波暗室における 通常の指向性測定と同じであ るが,ここで得られたデータ は,測定距離が不十分である ため正確ではない.

(B)仮想測定(アレー合成):こ の後、上記測定値を用いて数 値計算(オフライン信号処理) により合成開口アレーアンテ ナ**を仮想的に形成する。図1 (b) に示すように, 仮想波源 を実波源である対向アンテナ の両側に対称にN個ずつ等間 隔に設置する(仮想波源総数 は2N+1). このときのアレー アンテナは角度ステップΔ ω で円弧に形成することが本手 法の特徴である. 合成開口ア レーアンテナが円弧形状であ るため、それぞれの波源に行 路差R(1−cos ψ)に対応する 位相差を与えることにより, 有限距離にあるAUT周辺(y軸 上) で擬似平面波*9を生成す

- *3 遠方界:アンテナから放射される電磁界 が観測点までの距離に依存せず方向の関 数のみで決まる領域。
- *4 電波暗室:外部からの電波を遮断し,内 壁6面に電波吸収体を備えることで反射 波を抑制した実験設備.
- *5 偏波:電磁波が空間を伝搬するときの電 界の振動方向、本稿で取り上げた基地局 アンテナの場合、地面に対して垂直な面 で振動する垂直偏波と水平な面で振動す る水平偏波を共用とした構成が多い。
- *6 ブロードサイド:複数の素子を直線状に

配列したアンテナにおいて,配列軸方向 と直角となる方向のこと.

*7 複素受信電界:複素表示された受信電界. 電界は振幅と位相からなる複素数で表現 できる. ることができる. この位相差 を考慮して得られる遠方界指 向性 $E_{lar}(\theta_i)$ は,有限距離にあ る各波源点からの受信電界 E_{near} (θ_i)の和,すなわち合成開口 アレーアンテナからの到来波 の合成受信電界として式(1) により求められる.

$$E_{far}(\theta_i) = \sum_{j=N}^{N} E_{near}(\theta_i + \psi_j)_{W_i} \exp \{jkR(1 - \cos\psi_j)\} \Delta \psi$$
(1)

ここで $E_{\mu}(\theta)$ は求めたい複 素遠方界, $E_{near}(\theta_i + \phi_i)$ は有限 距離の各波源からの複素受信電 界(伝送特性),wはアレー合 成の重み, Rは測定距離, ψ_i は i番目の波源位置の相対角度, ップ, $k (= 2\pi/\lambda)$ は波数で ある. 回転角度 θ と相対角度 ψ のとり得る角度点(測定時のサ ンプルポイント)を同一に設定 した場合には,いったん E (θ_i) を測定しておけば, E_{near} $(\theta_i + \phi_i)$ を改めて測定しなおす 必要はない. つまり, $E_{nagr}(\theta)$ は円周方向に一度測定するだけ でよい. なお, 式(1)の位相 項の $R(1-\cos\phi)$ は実測定の 際の励振*10位相ではなく,前 述のとおり合成開口アレーアン テナを構成する各素子(波源) からの行路差分の位相補正を表 しており、アレー合成の際に仮 想的に与える項である.

2.2 利得測定

本手法に適用する利得測定は、あ らかじめ利得の分かっている基準 アンテナ(REF: REFerence antenna)とAUTを同一の地点で置換し て比較する方法(置換法.比較法と もいう)により行う.ここで、REF とAUTは同一の測定環境において 置換する条件があるため、REFも その開口の大きさにかかわらず AUTと同じ手順、すなわち回転測 定を行い複素受信電界 $E_{near}(\theta)$ を 取得する必要がある.

置換法において対向アンテナを 送信側, REFとAUTを受信側とす ると, 求めたい方向の利得*G^{AUT}*は 以下の式で求められる.

$$G^{AUT} = G^{REF} P^{AUT} / P^{REF}$$

= $G^{REF} (E_{far}^{AUT} / E_{far}^{REF})^2$ (2)

ここで G^{REF} , P^{AUT} , P^{REF} , E_{far}^{AUT} , E_{far}^{REF} は, それぞれ REFの既知利得, AUTの受信電力, REFの受信電力, 式(1)により求まるAUTの受信電界 強度, および式 (1) により求まる REFの受信電界強度である.

3. 遠方界指向性測定の 有効性検証

3.1 モーメント法による検証

本手法の有効性を検証するため. 有限距離での実験に相当するモー メント法*11によるシミュレーショ ンを行った.AUTの例として等振 幅給電の半波長ダイポールアレー アンテナを用い.表1に示す計算 機シミュレーション仕様で測定距 離10mにおける電界分布を計算し た. なお,ここでは便宜上AUTを送 信アンテナとして取り扱い,対向 アンテナ自体はモデル化せず観測 点での電界の複素値をそのまま用 いた(対向アンテナを無指向性と みなしたことに相当).また、同時 に遠方界指向性も計算した. 結果 を最大値で規格化した相対指向性 表記として,有限距離電界の指向 性を遠方界指向性とともに図2(a) に示す.特に主ビーム*12付近の不 一致が顕著であり、有限距離の測 定では遠方界指向性を正確に測定 できないことが確認できる。

次に,本手法により有限距離電 界のアレー合成を行った結果を遠 方界指向性とともに図2(b)に示 す.ここでは式(1)の波源の重み

表1 計算機シミュレーション仕様

周波数	2.0GHz
AUT	半波長ダイポールアレーアンテナ
AUTの長さ	2.1m
測定距離	10m
合成開口の開き角	150°
合成開口の素子数	375
合成開口の角度ステップ	0.4°

- *8 アレーアンテナ:複数の素子を配列した アンテナのこと.
- *9 平面波: 伝搬方向に垂直な平面内で電磁 界の振幅と位相が一定となる電磁波のこ
- *10 励振:アンテナに給電し,電磁波を発生

*11 モーメント法:電磁界解析法の1つで,金 属上に流れる電流を効率よく計算し,こ れを基に電波が放射される方向などを計 算できる.

^{*12} 主ビーム:最も強い放射方向のビームの こと.

はすべて1とし位相補正のみを実施 した.図より,エンドファイア*¹³ 方向の値にやや誤差が見られるも のの,主ビームの形状もよく一致 する結果が得られた.

以上のことから,本手法を用い ることにより有限距離での測定に おいても高精度な遠方界指向性が 得られることが確認できた.

3.2 平面波精度と測定距離 の評価

本手法はAUT周りで仮想的な擬 似平面波を生成することが前提であ るため、その生成精度が測定パラメ ータ設定に直接影響すると考えられ る.ここでは、遠方界測定が可能と なる要因を明らかにするためAUT 周りの平面波の生成精度(振幅分布 と位相分布)をシミュレーションに より定量的に評価し、本手法の基本 特性を明らかにする.

表2に平面波評価シミュレーションの仕様を示す.ここで波源側は 各々の波源からの振幅・位相分布を 数値的に重ね合わせることにより AUT周りの合成電界 E_{AUT} (x, y)を 求める.また,単純化のため各波源 は点波源として扱う.

通常の指向性測定システムでは対 向アンテナ側は単一波源である.こ のとき測定距離を*R*=60m,10mと した場合のAUT周りの電界分布を 図3に示す.図から分かるように, 単一波源の場合は振幅分布よりも位 相分布が急激な変化をすることによ り測定条件が制限されている.

次に,本手法を適用した場合の特

*13 エンドファイア:直線状に素子を配列し たアンテナにおいて,配列軸方向のこと. 性を評価する.測定距離はR=10m としたまま,本手法に相当する波源 広がり(仮想的合成開口アレーアン テナを形成)を150度とした場合の AUT周りの電界分布を図4に示す. 図3の単一対向アンテナ(通常の指 向性測定システム)の場合と比較す ると,振幅分布の偏差は大きくなり 波長程度の周期で振動しており,そ の偏差は最大で約0.6dBである.こ の振動は,合成開口アレーアンテナ からの距離が十分遠くないために定 在波が存在しており完全な平面波と はなっていないことを意味してい る.一方,位相分布も同様に細かい 周期的な変動が見られるが,図3と 比較すると偏差の絶対値は極めて小 さく5度以内に抑えられており,か つ場所依存性も極めて小さい.この 位相偏差の抑圧が,合成開口アレー アンテナを適用した効果であると考 えられる.図には*R*=5mの場合の

表2 平面波評価シミュレーションの仕様

周波数	2.0GHz
AUT	点波源
測定距離	10m
合成開口の開き角	150°
合成開口の素子数	1,501
合成開口の角度ステップ	0.1°

値も併記している.測定距離を短く したことにより,位相特性には大き な変化はなく良好であるが,振幅分 布は大きく劣化していることが分か る.

図5に平面波電界分布の振幅特性,位相特性の測定距離依存性を示す.ともに最大値と最小値の幅の最 悪値をプロットした.振幅偏差は測 定距離が短くなるにつれて増大し, 5mのときほぼ1dBとなっている. 一方,位相特性はほとんどの測定距 離において10度以内の良好な特性 を有している.

以上の結果より,本手法を用いる ことにより振幅特性は若干劣化して いるものの,位相特性を飛躍的に改 善できることにより,有限距離にお いても遠方界指向性測定を可能とし たといえる.

4. 利得測定の有効性 検証

4.1 モーメント法による測 定距離の評価

遠方界指向性測定と同様に,合 成開口アレーアンテナまでの距離 が利得測定精度に影響をおよぼす ものと考えられるため,送受信間 測定距離をパラメータとしてモー メント法による検証を行った.利 得評価シミュレーションの仕様は **表3**のとおりである.測定距離Rと 仮想波源の角度ステップ $\Delta \phi$ の間 には,仮想波源の素子間隔を ΔL と すると(ただし $R \gg \Delta L$)

 $\Delta \phi = \Delta L/R \quad (3)$

の関係がある.これは*R*が大きいと △ *∮*を細かくとる必要があることを 意味する.本検証は,通常の指向性 測定システムの角度ステップ設定を 考慮し,△*∮*=0.2度とした.

本検証の解析結果として,利得の 測定距離依存性を図6に示す.ここ で横軸は送受信間測定距離14mまで とし,縦軸はAUTの遠方界の全方向 への放射電力から算出される指向性 利得を基準とした利得変動量による 表記とした.送受信間測定は6m以上 とすることで0.1dB以内の偏差に収 まっていることがわかる.その一方 で,これよりも送受信間測定が短く なると利得変動量が増大する結果と

表3 利得評価シミュレーションの仕様

周波数	2.0GHz
基準アンテナ	半波長ダイポールアンテナ
被測定アンテナ	半波長ダイポールアレーアンテナ
被測定アンテナの長さ	2.1m
測定距離	10m
合成開口の開き角	150°
合成開口の素子数	751
合成開口の角度ステップ	0.2°

なる、この理由は、図6に示すよう に距離が短くなるにつれてAUT周辺 で振幅偏差が増大し,疑似平面波を 生成できなくなるためと考えられる.

4.2 基準アンテナの影響に よって生じる利得誤差 の実測評価

前述したように、置換法による 利得測定では、利得既知のREFを 測定する必要がある.通常,移動通 信の周波数帯ではREFとして標準 ホーンアンテナ^{*14}を用いることが 多いが、ここではAUTと同様の指 向性を有する REFを用い、アンテ ナ設置時に生じる位置精度に対す る利得変動特性をドコモの電波暗 室(送受信間距離10m)で測定し た.

表4に測定仕様を示す. REFの中 心を、それぞれ対向アンテナに対 して原点から前後方向(dx),左右 方向(*dv*) および高さ方向(+*dz*) へ変化させて測定した. なお, 回転 台の大きさと設置の安定性の制約 により、3つのパラメータ間でずら す位置の最大値が異なる. このと

*14 標準ホーンアンテナ:利得の標準を供給 するアンテナ.通常は導波管の一端を拡 げたホーンアンテナを用いる.

XI EERCENT OTHICLE		
周波数	2.0GHz	
被測定アンテナ・基準アンテナ	半波長ダイポールアレーアンテナ	
被測定アンテナ・基準アンテナの長さ	2.1m	
測定距離	10m	
合成開口の開き角	150°	
合成開口の素子数	1,501	
合成開口の角度ステップ	0.1°	

表4 位置精度に対する利得変動の測定仕様

き式(1)による変換は、REFの中 心が原点にあるものとして行った. 図7に位置精度に対する利得変動を 示す. グラフは中心を原点に設置 したときの利得値で規格化した. 利得変動差が最も大きなパラメー タはdxであることが分かる。これ は距離特性に対応する変動を受け るためと考えられる。一方、パラメ ータ dyと dzの利得変動は dxと比較 すると小さくなっている、これは、 REFにもAUTと同様に波長に対し て長いアンテナを用いることで、 アレー合成することにより暗室に 生じる反射の影響を軽減したため と考えられる. 図から、本電波暗室 においては各方向の設置精度を 10cm以内の誤差とすることで、利 得変動が0.2dB程度で測定できるこ とが分かる.

5. あとがき

本稿では、電波暗室における基地 局アンテナの放射特性の基本検討に ついて解説した. 電磁界シミュレー ションと実際の暗室での測定実験に より,本手法を用いて波長に対して 大きな長さを有するアンテナの遠方 界指向性と利得が精度よく測定でき ることを明らかにした.本稿では

2GHz帯の垂直偏波アンテナで検討 を行ったが,他の周波数帯や水平偏 波での測定も同様の手法で測定可能 である、今後は、本手法をアンテナ メーカの測定サイトに適用するた め、各社の電波暗室間での測定精度 の評価を行い、基地局アンテナの仕 様合格範囲の適正化に反映する予定 である.

文 献

- [1] R. C. Johnson, H. A. Ecker and R. A. Moore: "Compact range techniques and measurements," IEEE Trans. Antennas and Propagation, Vol. AP-17, No. 5, pp. 568-576, Sep. 1969.
- [2] J. E. Hansen : "Spherical Near-field Antenna Measurements," Peter Peregrinus Ltd., London, 1988.