

Bell Labs 5G Vision and Activities

Volker Braun, Alcatel-Lucent Bell Labs July 2015

 $\ensuremath{1}$ Copyright $\ensuremath{\mathbb O}$ 2015 Alcatel-Lucent. All rights reserved.

What's driving 5G?

Three main groups: Broadband, Mission critical and Small payload traffic

2 COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

5G Services: Heterogeneous requirements

- Very diverse requirement profiles
- Requirements will change over time, New use cases and profiles will appear
- No profile covers whole parameter space "One fits all" would be extremely wasteful
- Need differentiated solutions
 - Air interface
 - Access to network
 - Networking: Topology, protocols
- Use these profiles for validation and testing
 - Derive KPIs

How to deal with diverse requirements?

Flexible air interface

• Target is

- to enable the air interface to be configurable
- in a per user/device/service manner
- within a single carrier
- to allow for highest scalability and flexibility
- Motivates new multi-carrier waveform

• Test cases:

- Improved support of low-end devices with reduced signaling overhead
 - Relaxed synchronization in time and frequency
- Improved support of high Doppler, coexisting with efficient low-Doppler operation
- Support of low latency (via reduced TTI length)

 $\ensuremath{{5}}$ Copyright $\ensuremath{{\circ}}$ 2015 Alcatel-Lucent. All rights reserved.

Candidate Waveforms for 5G under Investigation

Waveforms to investigate

- CP-OFDM /SC-FDMA (LTE design for benchmark)
- UF-OFDM (Universal Filtered OFDM)
- FBMC-OQAM (Filter-Bank Multi-Carrier Offset-QAM)

 ${\bf 6}$ copyright \odot 2015 alcatel-lucent. All rights reserved.

5G Candidate Waveform Overview

Property	OFDM	FBMC (SMT)	UF-OFDM
Robustness to time-frequency misalignment (Relaxed synchronicity reduces signaling overhead and adds robustness for e.g. CoMP)	low	high	high
Suitability for fragmented spectrum	low	high	high
Suitability for short bursts/frames (e.g. for fast TDD switching + low latency modes)	high	medium	high
Suitability for small control elements (e.g. UL sounding symbols, PUCCH ACK/NACK)	high	low	high
Applicability to MIMO (e.g. complex precoding, spatial multiplexing, multi-user, time- frequency selective)	high (QAM)	low (Offset-QAM)	high (QAM)
Complexity	low	medium	low- <mark>medium</mark>
Adaptivity (w.r.t. Modulation and Coding, subcarrier spacing, filter shape)	medium	medium	high
Reuse of existing technology know-how (e.g. channel estimation, MIMO processing)	high	low	high
7 COPYRIGHT ◎ 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.	Every su	ccess has its network	Alcatel Lucent 🕖

Performance with Asynchronous Transmissions

Why relaxing synchronization?

Create an option for dropping closed-loop synchronization for:

- Less signaling overhead
- Less battery consumption
- "Connection-less" mode
- Reduced cost

Coexistence of mobile broadband (MBB) and small packet services

- MBB will operate synchronous
- Small packets may operate asynchronous in adjacent subbands
- 5G waveform is an enabler for this mix, avoiding inter-carrier interference (ICI)

UF-OFDM superior in scenarios with relaxed synchronization

F. Schaich, T. Wild, "Relaxed Synchronization Support of Universal Filtered Multi-Carrier including Autonomous Timing Advance", IEEE ISWCS'14, Barcelona, August 2014

COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Performance in High Doppler Scenarios

- For high Doppler LTE frame structure (A) has significant rate loss.
 - i.e. high velocities (> 100 km/h) and "high" carrier frequencies (> 2 GHz)
 - Changed design can gain up to factor 3
- Two options for dealing with this:
 - Via increased subcarrier spacing/shortened symbols (B) (synergy with low latency modes)
 - Adapt pilot placings (as given in D)
 - To adapt the spacing is superior (B) for high Doppler with making use of pilot boosting
- 5G will benefit from user-specific numerology

9 COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED

Open-Loop Demonstrator for 5G Waveforms

Transformation

www.alcatel-lucent.com

12 COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

