5G Trial and Field Test

Masao Akata

Vice President, Technology Team Leader

Samsung Electronics Japan

2

5G Vision

Enabling New Services through Convergence

Innovation

2015

 \cdot Avg. 1.7Gbps at 25km/hr

2016

3.7Gbps peak using live commercial backbone NW

Here's what Verbor's 5G field test looks like (pictures) liked New -A big antenna for a big signal A big starms is marked to be ver, which we readed to permetty with Severag travers for companies rise would be petrop to

'Samsung Delivers on Gigabit Wireless Promise of 5G'

Challenges and Opportunities

Challenges for mmWave

- Lager Path-loss
- Atmosphere loss, rain attenuation, foliage blocking
- Outdoor-to-indoor penetration loss
- Support of high-speed mobility

Foliage Loss Model

Realizing 5G mmWave

Samsung developed the World's 1st mmWave Prototype to verify the feasibility of mmWave mobile communications

Field Test

mmWave Channel Modeling (2011~)

Leading Channel Modeling Activity toward Outdoor Cellular Deployment

Measurement and Simulation

Measurement Campaign

NYU campus

Channel Modeling

Calibration

Channel modeling

Samsung's Activity on Channel Modeling

Universities & research centers
NYU, USC, KAIST

Research projects
5G PPP mmMAGIC, COST IC1004

Standard

Rapporteur on 3GPP 5G Channel Model SI for > 6GHz

Fixed Wireless Access as First 5G Use Case

An Alternative to Fiber for Delivering 5G Broadband to Homes and Offices

Typical FWA Environments (US)

Previous Studies for Foliage Loss

Model	Expression
Weissberger	$L_W (dB) = \begin{cases} 1.33 \times f^{0.284} d^{0.588} & 14 \text{ m} < d \le 400 \text{ m} \\ 0.45 \times f^{0.284} d & 0 \text{ m} \le d < 14 \text{ m} \end{cases}$
model [10]	f is frequency in GHz, and d is the tree depth in meter
ITU-R model [11]	$L_{ITU-R} (dB) = 0.2 \times f^{0.3} d^{0.6}$ f is frequency in MHz, and d is the tree depth in meter $(d < 400 \mathrm{m})$
COST235	$L_{COST} (dB) = \begin{cases} 26.6 \times f^{-0.2} d^{0.5} & \text{out-of-leaf} \\ 15.6 \times f^{-0.009} d^{0.26} & \text{in-leaf} \end{cases}$
model [12]	f is frequency in MHz, and d is the tree depth in meter
FITU-R	$L_{FITU-R} (dB) = \begin{cases} 0.37 \times f^{0.18} d^{0.59} & \text{out-of-leaf} \\ 0.39 \times f^{0.39} d^{0.25} & \text{in-leaf} \end{cases}$
model [13]	f is frequency in MHz, and d is the tree depth in meter
MA model [14]	$L_{MA} (dB) = A_m [1 - \exp(-R_0 d/A_m)]$ A_m is the maximum attenuation, R_0 is the initial gradient of the attenuation rate curve, and d is the tree depth in meter
NZG model [14]	$L_{NZG} (dB) = R_{\infty}d + k\left(1 - \exp\left\{\frac{-(R_0 - R_{\infty})}{k}d\right\}\right)$ d is the tree depth in meter, R_0 and R_{∞} are the initial and final specific attenuation values in dB/m, and k is the final attenuation offset in dB
DG	$L_{DG} (dB) = \frac{R_{\infty}}{f^a w^b} d + \frac{k}{w^c} \left(1 - \exp\left\{ \frac{-(R_0 - R_{\infty})}{k} w^c d \right\} \right)$
model [15]	The same definition for d, R_0, R_{∞} , and k with NZG model, f is frequency in GHz, w is the maximum effective coupling width between the transmitting and receiving antennas, and a, b, c , are estimated constant.

Foliage Loss ?

Pure foliage penetration loss

Excess loss considering reflection and diffraction path need between Tx and Rx

Measurement for Foliage-penetration Path

Tx-Rx Distance [m]

Penetration Loss (1/2)

Power-Angular Spectrum Analysis on Foliage Loss

- Full-scanning on foliage-penetration path over azimuth / elevation angles
- Single-tree (depth 4.1m) and double-tree (depth 7.8) foliage penetration measurement

Power-Angular Spectrum (PAS) of Single-Tree Foliage Loss

Penetration Loss (2/2)

6.3 and 6.5 dB/m penetration loss was observed respectively for single tree and double tree

Excess Loss – Reflection Path

Reflection path is one of major components of received signals

Excess Loss – Typical Roadside Trees (1/2)

Foliage loss is increasing along foliage depth, but "not linearly"

Main propagation mechanisms on foliage are

- 1) surface-wave propagation over tree-top/bottom
- 2) forward-scattering within vegetation
- 3) ground-reflected path on tree-trunk

Tx Rx

Excess Loss – Typical Roadside Trees (2/2)

Foliage loss is not extremely increased

- Foliage loss measurement at 20 GHz [1]
- Tendency matches with previous results
- 30~35 dB excess loss up to 50m depth

Distance between Tree and Transmitter

- Long distance is likely to have other propagation pathway
- Short distance may block reflected pathways
- Dual-gradient model

Sub-urban Measurements (1/4)

Pathloss at 232m distance is 138 dB and Max. excess loss is around 30 dB

Sub-urban Measurements (2/4)

In vegetated LoS, LoS direction path usually gives strong power

Sub-urban Measurements (3/4)

Measurements indicates several hundreds meter can be supported even in NLoS

Sub-urban Measurements (4/4)

Measurements indicates several hundreds meter can be supported even in NLoS

Rural Measurements (1/2)

SFU with Straight Road

SFU with Slightly Curved Road

Rural Measurements (2/2)

SFU with Curved Road

SFU with Highly Curved Road

Field Tests in Korea

Handover Test with SKT (Sept., 2016)

20일 SK텔레콤 분당사옥 주변에서 SK텔레콤 연구원과 삼성전자 연구원들이 밀리미터파 5G 시스템과 연동한 풀HD 급 영상통화 및 UHD 스트리밍 서비스를 동시에 이동환경에서 시연하고 있다.(사진=SK텔레콤) Pyeongchang Spec. 1st Call with KT (Oct., 2016)

KT-삼성전자, 5G 평창규격으로 데이터통신 성공

입력시간 | 2016/10/26/09:06 | 김현아 기자 | chaos@edaily.co.kr |

기자의 다른 기사보기

독자의견 🛛 🖪 좋아요 🚺 🥤 😭 🗾 📒 📟

図圡昌十一

KT-삼성전자, 세계최초 KT 5G-SIG 규격'기반 End-to-End '퍼스트 콜'성공 KT, 글로벌 제조사들과 지난 해 11월부터 6월까지 'KT 5G-SIG 규격' 개발 'KT 5G-SIG 규격' ITU 5G 요구사함 만족, 주요 단체의 핵심 기술요소 반영

[이데일리 김현아 기자]

sung Electronics

Field Tests in Japan

Trial with Docomo (Nov., 2016, Fuji Speedway)

5G Development Moving Quickly; NTT Docomo, Samsung Achieve 2.5 Gbps at 150 km/h

11/16/16 at 3:54 PM by Andrew Burger

http://www.telecompetitor.com/5g-development-moving-quickly-ntt-docomo-samsung-achieve-2-5-gbps-at-150-kmh/

Trial with KDDI (Feb., 2017, Tokyo)

BUSINESS / TECH | ADVANCES IN PROGRESS

With blazing speeds and better connectivity, next-generation 5G network may lay 'foundation' for the future

BY SHUSUKE MURAI

STAFF WRITER

http://www.japantimes.co.jp/news/2017/03/12/business/tech/blazing-speeds-betterconnectivity-next-generation-5g-network-may-lay-foundation-future/#.WNicelXyhhE

Field Tests in US

Trial with Verizon (Feb., 2016, New Jersey)

Inside Verizon's vision of smokin' 5G speeds

samsung 56

CNET takes a ride with Verizon as it tests tomorrow's wireless network. The van may be slow, but the connection sure isn't.

Samsung

Verizon Press Release (Feb., 2017)

Verizon to test 5G in 11 US cities in 2017, Samsung to help

by Andrew Grush - February 22, 2017

http://www.androidauthority.com/verizon-5g-samsung-751503/

5G Service Scenarios

5G End-to-End Systems

Samsung is Developing an E2E Portfolio of 5G Products : UE, Access, and Core

Thank You